RESUMO
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: ⢠The fermentation characteristics of dietary fiber in vitro models were reviewed. ⢠Metabolic pathways of metabolites and their roles in the intestine were reviewed. ⢠The role of dietary fiber in pigs at different stages was reviewed.
Assuntos
Ração Animal , Fibras na Dieta , Fermentação , Microbioma Gastrointestinal , Animais , Fibras na Dieta/metabolismo , Suínos , Microbioma Gastrointestinal/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Ácidos Graxos Voláteis/metabolismoRESUMO
High-fat diet (HFD) and overnutrition are important starting factors that may alter intestinal microbiota, lipid metabolism, and systemic inflammation. However, there were few studies on how intestinal microbiota contributes to tissue steatosis and hyperlipidemia. Here, we investigated the effect of lipid metabolism disorder-induced inflammation via toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), and nuclear factor-κB (NF-κB) pathways at the intestinal level in response to HFD. Twenty 80-day-old male New Zealand White rabbits were randomly divided into the normal diet group (NDG) and the high-fat diet group (HDG) for 80 days. Growth performance, blood biochemical parameters, lipid metabolism, inflammation, degree of tissue steatosis, and intestinal microbial composition were measured. HFD increased the relative abundance of Christensenellaceae_R_7_group, Marvinbryantia, Akkermansia etc., with a reduced relative abundance of Enterorhabdus and Lactobacillus. Moreover, HFD caused steatosis in the liver and abdominal fat and abnormal expression of some genes related to lipid metabolism and tight junction proteins. The TLR-2, TLR-4, NF-κB, TNF-α, and IL-6 were confirmed by overexpression with downregulation of IL-10. Serum biochemical indices (TG, TCHO, LDL-C, and HDL-C) were also increased, indicating evidence for the development of the hyperlipidemia model. Correlation analysis showed that this microbial dysbiosis was correlated with lipid metabolism and inflammation, which were associated with the intestinal tract's barrier function and hyperlipidemia. These results provide an insight into the relationship between HFD, the intestinal microbiota, intestinal barrier, tissue inflammation, lipid metabolism, and hyperlipidemia. KEY POINTS: ⢠High-fat diet leads to ileal microbiota disorders ⢠Ileal microbiota mediates local and systemic lipid metabolism disorders and inflammation ⢠There is a specific link between ileal microbiota, histopathology, and hyperlipidemia.
Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Coelhos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like , NF-kappa B , Hiperlipidemias/etiologia , Interleucina-10 , Fator de Necrose Tumoral alfa , Interleucina-6 , LDL-Colesterol/farmacologia , Inflamação , Proteínas de Junções ÍntimasRESUMO
In recent years, whole-plant corn silage has been widely used in China. Roughage is an important source of nutrition for ruminants and has an important effect on rumen microbiota, which plays an important role in animal growth performance and feed digestion. To better understand the effects of different silages on rumen microbiota, the effects of whole-plant corn silage or corn straw silage on growth performance, rumen fermentation products, and rumen microbiota of Simmental hybrid cattle were studied. Sixty healthy Simmental hybrid cattle were randomly divided into 2 groups with 6 replicates in each group and 5 cattle in each replicate. They were fed with whole-plant corn silage (WS) diet and corn straw silage (CS) diet respectively. Compared with corn straw silage, whole-plant corn silage significantly increased daily gain and decreased the feed intake-to-weight gain ratio (F/G) of beef cattle. Whole-plant corn silage also decreased the acetic acid in the rumen and the acetate-to-propionate ratio (A/P) compared with corn straw silage. On the genus level, the relative abundance of Prevotella_1 was significantly increased while the relative abundance of Succinivibrionaceae_UCG-002 was decreased in cattle fed whole-plant corn silage compared with those fed corn straw silage. Prevotella_1 was positively correlated with acetic acid and A/P. Succinivibrionaceae_UCG-002 was positively correlated with propionic acid and butyric acid, and negatively correlated with pH. Feeding whole-plant corn silage improved amino acid metabolism, nucleotide metabolism, and carbohydrate metabolism. Correlation analysis between rumen microbiota and metabolic pathways showed that Succinivibrionaceae_UCG-002 was negatively correlated with glycan biosynthesis and metabolism, metabolism of co-factors and vitamins, nucleotide metabolism, and translation while Prevotellaceae_UCG-003 was positively correlated with amino acid metabolism, carbohydrate metabolism, energy metabolism, genetic information processing, lipid metabolism, membrane transport, metabolism of cofactors and vitamins, nucleotide metabolism, replication and repair, and translation. Ruminococcus_2 was positively correlated with amino acid metabolism and carbohydrate metabolism. Feeding whole-plant corn silage can improve the growth performance and rumen fermentation of beef cattle by altering rumen microbiota and regulating the metabolism of amino acids, carbohydrates, and nucleotides. KEY POINTS: ⢠Feeding whole-plant corn silage could decrease the F/G of beef cattle ⢠Feeding whole-plant corn silage improves rumen fermentation in beef cattle ⢠Growth performance of beef cattle is related to rumen microbiota and metabolism.
Assuntos
Microbiota , Rúmen , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Digestão , Fermentação , Nucleotídeos/metabolismo , Prevotella/metabolismo , Rúmen/química , Silagem , Vitaminas/metabolismo , Zea mays/metabolismoRESUMO
BACKGROUND: Intensive investigations have identified a collection of microRNAs (miRNAs) and their functional machineries in cytoplasm. However, a comprehensive view of miRNAs and mRNAs in cytoplasm and nucleus has not been explored. This study aims to reveal the mechanisms of miRNA-RNA interactions in nucleus and cytoplasm. METHODS: In this study, the miRNAs and their target mRNAs in the Argonaute2 (Ago2) complex of nucleus and cytoplasm of gastric cancer cells were characterized using high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP). Then, the selected miRNAs were verified by Northern blot. The target mRNAs in the Argonaute2 (Ago2) complex of nucleus and cytoplasm of gastric cancer cells were analyzed through Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis. RESULTS: The results revealed that there were 243 miRNAs and 265 miRNAs in the Ago2 complexes of nucleus and cytoplasm, respectively. The majority of mature miRNAs existed in cytoplasm. The analysis of miRNA targetome from the Ago2 complexes indicated that a lot of mRNAs with high expression level existed in nucleus. The target genes of miRNAs in the Ago2 complexes of nucleus and cytoplasm played important roles in cell proliferation, cell differentiation, innate immune response and tumorigenesis. CONCLUSIONS: microRNA-mRNA interactions occur in nucleus and cytoplasm of gastric cancer cells. Therefore, our study demonstrated that miRNA-mRNA interactions not only took place in cytoplasm but also in nucleus.
Assuntos
Proteínas Argonautas/genética , Carcinogênese/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Diferenciação Celular/genética , Núcleo Celular/genética , Proliferação de Células/genética , Citoplasma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata/genética , Imunoprecipitação , RNA Mensageiro/genética , Neoplasias Gástricas/patologiaRESUMO
It is well known that Sm proteins, small nuclear ribonucleoproteins, act as core spliceosomal factors in alternative splicing of mRNA precursors. MicroRNAs (miRNAs) can function in alternative splicing by targeting mRNAs of splicing factors. However, the direct interaction between miRNAs and proteins of splicing complex in nucleus has not been explored. In this study, the mature miRNAs in nuclear Sm complex of breast cancer cells and normal breast epithelial cells were characterized. Small RNA sequencing of immunoprecipitated nuclear Sm complex with the SmD1-specific antibody identified 123 and 170 mature miRNAs in nuclear Sm complex of normal breast cells and breast cancer cells, respectively. The results of Northern blot analysis confirmed the existence of mature miRNAs in Sm complex and electrophoretic mobility shift assay (EMSA) validated the binding of miRNAs with proteins of Sm complex. Among the identified miRNAs bound to the Sm complex in nucleus, 94 miRNAs were significantly upregulated, and 39 miRNAs significantly downregulated in breast cancer cells compared with normal breast cells, suggesting that miRNAs in nuclear Sm complex might be associated to tumorigenesis of breast cancer by regulating Sm complex during alternative splicing of mRNA precursors. Our study provided novel clues to reveal the regulatory mechanism of Sm complex in the assembly of spliceosome and contributed novel aspects of miRNAs to tumorigenesis of breast cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/patologia , MicroRNAs/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Feminino , Humanos , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo , Células Tumorais CultivadasRESUMO
In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp (Marsupenaeus japonicus). Dorsal, the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction.IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions.
Assuntos
Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Penaeidae/virologia , RNA Viral/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , MicroRNAs/genética , RNA Viral/genética , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/imunologiaRESUMO
Viruses, in particular DNA viruses, generate microRNAs (miRNAs) to control the expression of host and viral genes. Due to their essential roles in virus-host interactions, viral miRNAs have attracted extensive investigations in recent years. To date, however, most studies on viral miRNAs have been conducted in cell lines. In this study, the viral miRNAs from white spot syndrome virus (WSSV) were characterized in shrimp in vivo. On the basis of our previous study and small RNA sequencing in this study, a total of 89 putative WSSV miRNAs were identified. As revealed by miRNA microarray analysis and Northern blotting, the expression of viral miRNAs was tissue specific in vivo. The results indicated that the viral miRNA WSSV-miR-N24 could target the shrimp caspase 8 gene, and this miRNA further repressed the apoptosis of shrimp hemocytes in vivo. As a result, the number of WSSV copies in shrimp in vivo was significantly increased compared with the control level (WSSV only). Therefore, our study presents the first report on the in vivo molecular events of viral miRNA in antiviral apoptosis.
Assuntos
Apoptose/genética , MicroRNAs/genética , Penaeidae/genética , Penaeidae/virologia , RNA Viral/genética , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Pareamento de Bases , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Hemócitos/metabolismo , Hemócitos/patologia , Interações Hospedeiro-Patógeno , MicroRNAs/química , Modelos Biológicos , Interferência de RNA , RNA Viral/químicaRESUMO
[This corrects the article DOI: 10.1016/j.omtn.2017.10.016.].
RESUMO
[This corrects the article DOI: 10.1016/j.omtn.2021.12.021.].
RESUMO
Globally, appetite disorders have become an increasingly prominent public health issue. While short-term appetite loss may seem relatively harmless, prolonged instances can lead to serious physical and mental damage. In recent years, numerous studies have highlighted the significant role of the "microbiota-gut-brain" axis in the regulation of feeding behavior in organisms, suggesting that targeting the gut microbiota may be a novel therapeutic strategy for appetite disorders. However, the molecular mechanisms through which the gut microbiota mediates the increase in host appetite and the causal relationship between the two remain unclear. Based on this, we conducted 16S rRNA sequencing to analyze the gut microbiota of rabbits with high and low feed intake, followed by fecal microbiota transplantation (FMT) and metabolite gavage experiments to elucidate the underlying mechanisms. Our research indicates that the high feed intake group exhibited significant enrichment of the g__Bacteroides and gamma-aminobutyric acid (GABA), and intragastric administration of GABA effectively promoted the host's feeding behavior. The underlying mechanism involves GABA derived from the gut microbiota inhibiting the secretion of satiety hormones to enhance the host's feeding behavior. Furthermore, the results of FMT suggest that differences in gut microbiota composition may be a contributing factor to varying levels of feed intake in the host. In conclusion, these findings emphasize the role of the gut microbiota-derived GABA, in increasing host feed intake, offering a new target for the treatment of appetite disorders from the perspective of gut microbiota.IMPORTANCEThe incidence of anorexia is rapidly increasing and has become a global burden. Gut microbiota can participate in the regulation of host feeding behavior, yet the molecular mechanisms through which the gut microbiota mediates the increase in host appetite and the causal relationship between them remain unclear. In this study, we utilized 16S rRNA sequencing to investigate the composition of the gut microbiota in rabbits with varying levels of feed intake and employed fecal microbiota transplantation and gastric infusion experiments with gamma-aminobutyric acid (GABA) to elucidate the potential mechanisms involved. GABA derived from the gut microbiota can effectively enhance the host's feeding behavior by inhibiting the secretion of satiety hormones. This discovery underscores the pivotal role of the gut microbiota in modulating host appetite, offering novel research avenues and therapeutic targets for appetite disorders.
Assuntos
Apetite , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Ácido gama-Aminobutírico , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Coelhos , Apetite/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Masculino , RNA Ribossômico 16S/genética , Comportamento Alimentar/efeitos dos fármacosRESUMO
It is commonly accepted that dietary fibers are good for gut health. The effect of fibers on the diversity and metabolic activities of the cecal microflora, however, differ with the passage of time. Therefore, we investigated the time-series impacts of the pasture grazing system (a high dietary fiber source) on the cecal microbiome and short-chain fatty acids in Wanpu geese, comparing it to commercial feeding (a low dietary fiber source). The cecal microbiota composition and SCFA concentrations were evaluated by 16S rRNA gene sequencing and gas chromatography, respectively. We found that pasture produced a generally quick positive response to Bacteroidales, Lactobacillales, Gastranaerophilales (at 45 days), Lachnospirales, and Oscillospirales (at 60 days and 90 days) irrespective of Erysipelotrichales (at 45 days), Clostridia_UCG-014, RF39 (at 60 days), Christensenellales, and Peptostreptococcales-Tissierellales (at 90 days) in geese. Meanwhile, we found that Lactobacillales, Gastranaerophilales, Lachnospirales, and Oscillospirales were significantly correlated with short-chain fatty acids in pasture grazing geese. Indeed, the correlation of cecal microbiota with SCFAs led to altered microbial functions evinced by COG; KEGG pathway levels 1, 2, and 3; BugBase; and FAPROTAX databases. This study emphasizes the importance of dietary fiber sources in influencing beneficial impacts in regulating geese microbiota homeostasis and metabolic functions such as energy and lipid metabolism.IMPORTANCELow dietary fiber diet sources cause gut microbial and short-chain fatty acid alterations that lead to compromised animal health. The establishment of an artificial pasture grazing system at the expense of ryegrass is a good source of dietary fiber for geese. Our results described the importance of pasture in maintaining the gut microbiota, SCFAs, and potential microbial functions reported by COG; KEGG pathway levels 1, 2, and 3; BugBase; and FAPROTAX databases.
Assuntos
Ração Animal , Bactérias , Ceco , Fibras na Dieta , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Gansos , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/fisiologia , Gansos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Ração Animal/análise , Ceco/microbiologia , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , RNA Ribossômico 16S/genéticaRESUMO
The type and composition of food strongly affect the variation and enrichment of the gut microbiota. The gut-microbiota-spleen axis has been developed, incorporating the spleen's function and maturation. However, how short-chain fatty-acid-producing gut microbiota can be considered to recover spleen function, particularly in spleens damaged by changed gut microbiota, is unknown in geese. Therefore, the gut microbial composition of the caecal chyme of geese was assessed by 16S rRNA microbial genes, and a Tax4Fun analysis identified the enrichment of KEGG orthologues involved in lipopolysaccharide production. The concentrations of LPS, reactive oxygen species, antioxidant/oxidant enzymes, and immunoglobulins were measured from serum samples and spleen tissues using ELISA kits. Quantitative reverse transcription PCR was employed to detect the Kelch-like-ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), B cell and T cell targeting markers, and anti-inflammatory/inflammatory cytokines from the spleen tissues of geese. The SCFAs were determined from the caecal chyme of geese by using gas chromatography. In this study, ryegrass-enriched gut microbiota such as Eggerthellaceae, Oscillospiraceae, Rikenellaceae, and Lachnospiraceae attenuated commercial diet-induced gut microbial alterations and spleen dysfunctions in geese. Ryegrass significantly improved the SCFAs (acetic, butyric, propionic, isovaleric, and valeric acids), AMPK pathway-activated Nrf2 redox signaling cascades, B cells (B220, CD19, and IgD), and T cells (CD3, CD4, CD8, and IL-2, with an exception of IL-17 and TGF-ß) to activate anti-inflammatory cytokines (IL-4 and IL-10) and immunoglobulins (IgA, IgG, and IgM) in geese. In conclusion, ryegrass-improved reprogramming of the gut microbiota restored the spleen functions by attenuating LPS-induced oxidative stress and systemic inflammation through the gut-microbiota-spleen axis in geese.
Assuntos
Microbioma Gastrointestinal , Lolium , Microbioma Gastrointestinal/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , Baço , Disbiose , RNA Ribossômico 16S , Fator 2 Relacionado a NF-E2 , Dieta , Citocinas , Anti-Inflamatórios , ImunoglobulinasRESUMO
Atrazine, a commonly employed herbicide for corn production, can leave residues in soil, resulting in photosynthetic toxicity and impeding growth in subsequent alfalfa (Medicago sativa L.) crops within alfalfa-corn rotation systems. The molecular regulatory mechanisms by which atrazine affects alfalfa growth and development, particularly its impact on the microbial communities of the alfalfa rhizosphere, are not well understood. This study carried out field experiments to explore the influence of atrazine stress on the biomass, chlorophyll content, antioxidant system, and rhizosphere microbial communities of the atrazine-sensitive alfalfa variety WL-363 and the atrazine-resistant variety JN5010. The results revealed that atrazine significantly reduced WL-363 growth, decreasing plant height by 8.58 cm and root length by 5.42 cm (p < 0.05). Conversely, JN5010 showed minimal reductions, with decreases of 1.96 cm in height and 1.26 cm in root length. Chlorophyll content in WL-363 decreased by 35% under atrazine stress, while in JN5010, it was reduced by only 10%. Reactive oxygen species (ROS) accumulation increased by 60% in WL-363, compared to a 20% increase in JN5010 (p < 0.05 for both). Antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT), were significantly elevated in JN5010 (p < 0.05), suggesting a more robust defense mechanism. Although the predominant bacterial and fungal abundances in rhizosphere soils remained generally unchanged under atrazine stress, specific microbial groups exhibited variable responses. Notably, Promicromonospora abundance declined in WL-363 but increased in JN5010. FAPROTAX functional predictions indicated shifts in the abundance of microorganisms associated with pesticide degradation, resistance, and microbial structure reconstruction under atrazine stress, displaying different patterns between the two varieties. This study provides insights into how atrazine residues affect alfalfa rhizosphere microorganisms and identifies differential microbial responses to atrazine stress, offering valuable reference data for screening and identifying atrazine-degrading bacteria.
RESUMO
Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated ß-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.
Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Lactente , Humanos , Animais , Suínos , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Lipopolissacarídeos , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Piroptose , Diarreia/microbiologia , Estresse OxidativoRESUMO
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Assuntos
Anorexia , Eixo Encéfalo-Intestino , Humanos , Apetite , Obesidade , Ingestão de AlimentosRESUMO
The use of high-quality roughage to improve beef quality has become an important issue in China, as the country has become the world's largest beef consumer. This study aimed to evaluate the effects of different forage qualities (wheat straw vs alfalfa hay) on Simmental crossbreed cattle's meat quality, rumen fermentation and microbiota. AHG (Alfalfa hay group) improved the ADFI (Average daily feed intake) and ADG (Average daily gain) of the beef cattle, meat-to-bone ratio and EE (Ether extract). The C18:3n3 and C20:3n3 composition of LD in AHG was significantly higher than WSG. An increase in the relative abundance of Firmicutes and a decrease in Bacteroidetes was observed. AHG resulted in higher relative abundance of Saccharomonospora, Streptomyces. A negative correlation between Treponema and muscle PUFA was noticed. Prevotella was negatively correlated with starch and sucrose metabolism. In conclusion, current study demonstrates that feeding alfalfa hay can raise meat quality by altering the rumen microbiota, providing valuable information for the application of alfalfa hay in beef cattle breeding.
RESUMO
Smilax glabra Roxb (S. glabra) is a conventional Chinese medicine that is mainly used for the reliability of inflammation. However, bioactive polysaccharides from S. glabra (SGPs) have not been thoroughly investigated. Here, we demonstrate for the first time that SGPs preserve the integrity of the gut epithelial layer and protect against intestinal mucosal injury induced by dextran sulfate sodium. Mechanistically, SGPs mitigated colonic mucosal injury by restoring the association between the gut flora and innate immune functions. In particular, SGPs increased the number of goblet cells, reduced the proportion of apoptotic cells, improved the differentiation of gut tight junction proteins, and enhanced mucin production in the gut epithelial layer. Moreover, SGPs endorsed the propagation of probiotic bacteria, including Lachnospiraceae bacterium, which strongly correlated with decreased pro-inflammatory cytokines via the blocking of the TLR-4 NF-κB and MyD88 pathways. Overall, our study establishes a novel use of SGPs for the treatment of inflammatory bowel disease (IBD)-associated mucosal injury and provides a basis for understanding the therapeutic effects of natural polysaccharides from the perspective of symbiotic associations between host innate immune mechanisms and the gut microbiome.
Assuntos
Colite , Microbioma Gastrointestinal , Smilax , Animais , Camundongos , Reprodutibilidade dos Testes , Colo , Polissacarídeos/efeitos adversos , Imunidade , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
INTRODUCTION: Geese can naturally obtain dietary fiber from pasture, which has anti-inflammatory and antioxidant properties. This study aimed to investigate the inhibitory impacts of pasture on ameliorating LPS-ROS-induced gut barrier dysfunction and liver inflammation in geese. Materials and methods. The lipopolysaccharides (LPS), alkaline phosphatase (ALP), reactive oxygen species (ROS), tight junction proteins, antioxidant enzymes, immunoglobulins, and metabolic syndrome were determined using ELISA kits. The Kelch-like-ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) and inflammatory cytokines were determined using the quantitative reverse transcription PCR (RT-qPCR) method. The intestinal morphology was examined using the Hematoxylin and Eosin (H&E) staining method in ileal tissues. Results. Pasture significantly influences nutrient absorption (p < 0.001) by ameliorating LPS and ROS-facilitated ileal permeability (p < 0.05) and systemic inflammation (p < 0.01). Herein, the gut permeability was paralleled by liver inflammation, which was significantly mimicked by ALP-dependent Nrf2 (p < 0.0001) and antioxidant enzyme activation (p < 0.05). Indeed, the correlation analysis of host markers signifies the importance of pasture in augmenting geese's health and production by averting gut and liver inflammation. Conclusions. Our results provide new insight into the mechanism of the pasture-induced ALP-dependent Nrf2 signaling pathway in limiting systemic inflammation in geese.
RESUMO
Because the demand for pork is increasing, it is crucial to devise efficient and green methods to improve the quality and quantity of meat. This study investigated the improvement in pork quality after the inclusion of alfalfa meal or alfalfa silage in pig diet. Our results indicated that alfalfa silage improved meat quality more effectively in terms of water-holding capacity, drip loss, and marbling score. Besides, an alfalfa silage diet can affect the level of fatty acids and amino acids in pork. Further, alfalfa silage was found to improve meat quality by remodeling intestinal microbiota and altering the level of SCFAs, providing a viable option for improving meat quality through forage.