Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Pharmacol ; 101(5): 343-356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246481

RESUMO

AMPA-type gultamate receptors (AMPARs) mediate excitatory signaling in the brain and are therapeutic targets for the treatment of diverse neurological disorders. The receptors interact with a variety of auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). The TARPs influence AMPAR biosynthesis and trafficking and enhance receptor responses by slowing desensitization and deactivation and increasing single-channel conductance. TARP γ8 has an expression pattern that is distinct from that of other TARPs, being enriched in the hippocampus. Recently, several compounds have been identified that selectivity inhibit γ8-containing AMPARs. One such inhibitor, JNJ-55511118, has shown considerable promise for the treatment of epilepsy. However, key details of its mechanism of action are still lacking. Here, using patch-clamp electrophysiological recording from heterologously expressed AMPARs, we show that JNJ-55511118 inhibits peak currents of γ8-containing AMPARs by decreasing their single-channel conductance. The drug also modifies hallmark features of AMPAR pharmacology, including the TARP-dependent actions of intracellular polyamines and the partial agonist kainate. Moreover, we find that JNJ-55511118 reduces the influence of γ8 on all biophysical measures, aside from its effect on the recovery from desensitization. The drug is also effective when applied intracellularly, suggesting it may access its binding site from within the membrane. Additionally, we find that AMPARs incorporating TARP γ2 mutated to contain the JNJ-55511118 binding site, exhibit greater block than seen with AMPARs containing γ8, potentially reflecting differences in TARP stoichiometry. Taken together, our data provide new insight into the mechanism by which γ8-selective drugs inhibit AMPARs. SIGNIFICANCE STATEMENT: Although modulation of AMPA-type glutamate receptors shows promise for the treatment various neurological conditions, the absence of subtype-selective drugs has hindered adoption of this therapeutic strategy. We made patch-clamp recordings to characterize the actions of the γ8-selective AMPAR inhibitor JNJ-55511118 on GluA2(Q) receptors expressed in HEK cells. We report that JNJ-55511118 inhibits AMPAR-mediated currents by reducing single-channel conductance, providing clear insight into the mechanism of action of this important class of AMPAR modulators.


Assuntos
Canais de Cálcio , Receptores de AMPA , Benzimidazóis , Canais de Cálcio/metabolismo , Proteínas Nucleares , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
2.
Epilepsia ; 63(12): e156-e163, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161652

RESUMO

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) are ligand-gated cationic channels formed from combinations of GluA1-4 subunits. Pathogenic variants of GRIA1-4 have been described in patients with developmental delay, intellectual disability, autism spectrum disorder, and seizures, with GRIA2 variants typically causing AMPAR loss of function. Here, we identify a novel, heterozygous de novo pathogenic missense mutation in GRIA2 (c.1928 C>T, p.A643V, NM_001083619.1) in a 1-year-old boy with epilepsy, developmental delay, and failure to thrive. We made patch-clamp recordings to compare the functional and pharmacological properties of variant and wild-type receptors expressed in HEK293 cells, with and without the transmembrane AMPAR regulatory protein γ2. This showed GluA2 A643V-containing AMPARs to exhibit a novel gain of function, with greatly slowed deactivation, markedly reduced desensitization, and increased glutamate sensitivity. Perampanel, an antiseizure AMPAR negative allosteric modulator, was able to fully block GluA2 A643V/γ2 currents, suggesting potential therapeutic efficacy. The subsequent introduction of perampanel to the patient's treatment regimen was associated with a marked reduction in seizure burden, a resolution of failure to thrive, and clear developmental gains. Our study reveals that GRIA2 disorder can be caused by a gain-of-function variant, and both predicts and suggests the therapeutic efficacy of perampanel. Perampanel may prove beneficial for patients with other gain-of-function GRIA variants.


Assuntos
Transtorno do Espectro Autista , Insuficiência de Crescimento , Humanos , Lactente , Mutação com Ganho de Função , Células HEK293 , Convulsões/tratamento farmacológico , Convulsões/genética
3.
J Physiol ; 599(10): 2655-2671, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33533533

RESUMO

AMPA receptors are tetrameric glutamate-gated ion channels that mediate a majority of fast excitatory neurotransmission in the brain. They exist as calcium-impermeable (CI-) and calcium-permeable (CP-) subtypes, the latter of which lacks the GluA2 subunit. CP-AMPARs display an array of distinctive biophysical and pharmacological properties that allow them to be functionally identified. This has revealed that they play crucial roles in diverse forms of central synaptic plasticity. Here we summarise the functional hallmarks of CP-AMPARs and describe how these are modified by the presence of auxiliary subunits that have emerged as pivotal regulators of AMPARs. A lasting change in the prevalence of GluA2-containing AMPARs, and hence in the fraction of CP-AMPARs, is a feature in many maladaptive forms of synaptic plasticity and neurological disorders. These include modifications of glutamatergic transmission induced by inflammatory pain, fear conditioning, cocaine exposure, and anoxia-induced damage in neurons and glia. Furthermore, defective RNA editing of GluA2 can cause altered expression of CP-AMPARs and is implicated in motor neuron damage (amyotrophic lateral sclerosis) and the proliferation of cells in malignant gliomas. A number of the players involved in CP-AMPAR regulation have been identified, providing useful insight into interventions that may prevent the aberrant CP-AMPAR expression. Furthermore, recent molecular and pharmacological developments, particularly the discovery of TARP subtype-selective drugs, offer the exciting potential to modify some of the harmful effects of increased CP-AMPAR prevalence in a brain region-specific manner.


Assuntos
Plasticidade Neuronal , Receptores de AMPA , Canais de Cálcio/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Transmissão Sináptica
4.
J Neurosci ; 37(25): 6007-6020, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28559374

RESUMO

In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically influence the distribution, gating, and pharmacology of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. We found that the Type I TARP γ-2 (stargazin) is present in lamina II of the superficial dorsal horn, an area involved in nociception. Consistent with the notion that γ-2 is associated with surface AMPARs, CNQX, a partial agonist at AMPARs associated with Type I TARPs, evoked whole-cell currents in lamina II neurons, but such currents were severely attenuated in γ-2-lacking stargazer (stg/stg) mice. Examination of EPSCs revealed the targeting of γ-2 to be synapse-specific; the amplitude of spontaneously occurring miniature EPSCs (mEPSCs) was reduced in neurons from stg/stg mice, but the amplitude of capsaicin-induced mEPSCs from C-fiber synapses was unaltered. This suggests that γ-2 is associated with AMPARs at synapses in lamina II but excluded from those at C-fiber inputs, a view supported by our immunohistochemical colabeling data. Following induction of peripheral inflammation, a model of hyperalgesia, there was a switch in the current-voltage relationships of capsaicin-induced mEPSCs, from linear to inwardly rectifying, indicating an increased prevalence of calcium-permeable (CP) AMPARs. This effect was abolished in stg/stg mice. Our results establish that, although γ-2 is not typically associated with calcium-impermeable AMPARs at C-fiber synapses, it is required for the translocation of CP-AMPARs to these synapses following peripheral inflammation.SIGNIFICANCE STATEMENT In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically determine the functional properties of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. An increase in the excitability of neurons within the superficial dorsal horn (SDH) of the spinal cord is thought to underlie heighted pain sensitivity. One mechanism considered to contribute to such long-lived changes is the remodeling of the ionotropic AMPA-type glutamate receptors that underlie fast excitatory synaptic transmission in the SDH. Here we show that the TARP γ-2 (stargazin) is present in SDH neurons and is necessary in a form of inflammatory pain-induced plasticity, which involves an increase in the prevalence of synaptic calcium-permeable AMPARs.


Assuntos
Canais de Cálcio/metabolismo , Inflamação/metabolismo , Plasticidade Neuronal/fisiologia , Células do Corno Posterior/metabolismo , Receptores de AMPA/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Canais de Cálcio/genética , Capsaicina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Amielínicas/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores de AMPA/agonistas , Transmissão Sináptica/genética
5.
J Neurosci ; 35(10): 4203-14, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762667

RESUMO

Presynaptic ionotropic glutamate receptors (iGluRs) play important roles in the control of synaptogenesis and neurotransmitter release, yet their regulation is poorly understood. In particular, the contribution of transmembrane auxiliary proteins, which profoundly shape the trafficking and gating of somatodendritic iGluRs, is unknown. Here we examined the influence of transmembrane AMPAR regulatory proteins (TARPs) on presynaptic AMPARs in cerebellar molecular layer interneurons (MLIs). 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a partial agonist at TARP-associated AMPARs, enhanced spontaneous GABA release in wild-type mice but not in stargazer mice that lack the prototypical TARP stargazin (γ-2). These findings were replicated in mechanically dissociated Purkinje cells with functional adherent synaptic boutons, demonstrating the presynaptic locus of modulation. In dissociated Purkinje cells from stargazer mice, AMPA was able to enhance mIPSC frequency, but only in the presence of the positive allosteric modulator cyclothiazide. Thus, ordinarily, presynaptic AMPARs are unable to enhance spontaneous release without γ-2, which is required predominantly for its effects on channel gating. Presynaptic AMPARs are known to reduce action potential-driven GABA release from MLIs. Although a G-protein-dependent non-ionotropic mechanism has been suggested to underlie this inhibition, paradoxically we found that γ-2, and thus AMPAR gating, was required. Following glutamate spillover from climbing fibers or application of CNQX, evoked GABA release was reduced; in stargazer mice such effects were markedly attenuated in acute slices and abolished in the dissociated Purkinje cell-nerve bouton preparation. We suggest that γ-2 association, by increasing charge transfer, allows presynaptic AMPARs to depolarize the bouton membrane sufficiently to modulate both phasic and spontaneous release.


Assuntos
Canais de Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Benzotiadiazinas/farmacologia , Canais de Cálcio/genética , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terminações Pré-Sinápticas/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Receptores de AMPA/química , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Tetrodotoxina/farmacologia
6.
J Neurosci ; 35(49): 16171-9, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26658868

RESUMO

AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT: Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of synaptic plasticity, and alterations in their expression or regulation are also seen in a number of serious neurological conditions, including stroke, motor neuron disease, and cocaine addiction. Several groups of auxiliary transmembrane proteins have been described that enhance the function and cell-surface expression of AMPARs. We now report that the recently identified auxiliary protein GSG1L decreases weighted mean channel conductance and calcium permeability of CP-AMPARs while increasing polyamine-dependent rectification by diminishing outward current. Our experiments reveal that GSG1L is an auxiliary subunit that can markedly suppress CP-AMPAR function, in both recombinant systems and central neurons.


Assuntos
Cálcio/metabolismo , Claudinas/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Claudinas/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Poliaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Espermina/farmacologia
7.
J Neurosci ; 34(35): 11673-83, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164663

RESUMO

Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD.


Assuntos
Canais de Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Linhagem Celular , Humanos , Técnicas de Patch-Clamp , Poliaminas/metabolismo , Ratos , Transfecção
8.
Mol Pharmacol ; 88(1): 139-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943115

RESUMO

In this Perspective, former and current editors of Molecular Pharmacology, together with the guest editors for this 50th Anniversary Issue, provide a historical overview of the journal since its founding in 1965. The substantial impact that Molecular Pharmacology has had on the field of pharmacology as well as on biomedical science is discussed, as is the broad scope of the journal. The authors conclude that, true to the original goals for the journal, Molecular Pharmacology today remains an outstanding venue for work that provides a mechanistic understanding of drugs, molecular probes, and their biologic targets.


Assuntos
Publicações Periódicas como Assunto/tendências , Farmacogenética/história , Animais , Sistemas de Liberação de Medicamentos , História do Século XX , Humanos , Preparações Farmacêuticas/química
9.
J Physiol ; 593(19): 4373-86, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26174503

RESUMO

KEY POINTS: The hippocampal CA1 region is highly vulnerable to ischaemic stroke. Two forms of AMPA receptor (AMPAR) plasticity - an anoxic form of long-term potentiation and a delayed increase in Ca(2+) -permeable (CP) AMPARs - contribute to this susceptibility by increasing excitotoxicity. In CA1, the acid-sensing ion channel 1a (ASIC1a) is known to facilitate LTP and contribute to ischaemic acidotoxicity. We have examined the role of ASIC1a in AMPAR ischaemic plasticity in organotypic hippocampal slice cultures exposed to oxygen glucose deprivation (a model of ischaemic stroke), and in hippocampal pyramidal neuron cultures exposed to acidosis. We find that ASIC1a activation promotes both forms of AMPAR plasticity and that neuroprotection, by inhibiting ASIC1a, circumvents any further benefit of blocking CP-AMPARs. Our observations establish a new interaction between acidotoxicity and excitotoxicity, and provide insight into the role of ASIC1a and CP-AMPARs in neurodegeneration. Specifically, we propose that ASIC1a activation drives certain post-ischaemic forms of CP-AMPAR plasticity. ABSTRACT: The CA1 region of the hippocampus is particularly vulnerable to ischaemic damage. While NMDA receptors play a major role in excitotoxicity, it is thought to be exacerbated in this region by two forms of post-ischaemic AMPA receptor (AMPAR) plasticity - namely, anoxic long-term potentiation (a-LTP), and a delayed increase in the prevalence of Ca(2+) -permeable GluA2-lacking AMPARs (CP-AMPARs). The acid-sensing ion channel 1a (ASIC1a), which is expressed in CA1 pyramidal neurons, is also known to contribute to post-ischaemic neuronal death and to physiologically induced LTP. This raises the question does ASIC1a activation drive the post-ischaemic forms of AMPAR plasticity in CA1 pyramidal neurons? We have tested this by examining organotypic hippocampal slice cultures (OHSCs) exposed to oxygen glucose deprivation (OGD), and dissociated cultures of hippocampal pyramidal neurons (HPNs) exposed to low pH (acidosis). We find that both a-LTP and the delayed increase in the prevalence of CP-AMPARs are dependent on ASIC1a activation during ischaemia. Indeed, acidosis alone is sufficient to induce the increase in CP-AMPARs. We also find that inhibition of ASIC1a channels circumvents any potential neuroprotective benefit arising from block of CP-AMPARs. By demonstrating that ASIC1a activation contributes to post-ischaemic AMPAR plasticity, our results identify a functional interaction between acidotoxicity and excitotoxicity in hippocampal CA1 cells, and provide insight into the role of ASIC1a and CP-AMPARs as potential drug targets for neuroprotection. We thus propose that ASIC1a activation can drive certain forms of CP-AMPAR plasticity, and that inhibiting ASIC1a affords neuroprotection.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Acidose/fisiopatologia , Isquemia Encefálica/fisiopatologia , Região CA1 Hipocampal/fisiologia , Células Piramidais/fisiologia , Receptores de AMPA/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Hipoglicemia/fisiopatologia , Hipóxia/fisiopatologia , Camundongos Knockout , Ratos Wistar
10.
J Neurosci ; 32(29): 9796-804, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815494

RESUMO

Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. Significant advances have been made in our understanding of AMPA-type glutamate receptor (AMPAR) regulation by transmembrane AMPAR regulatory proteins. Less is known about the functional influence of cornichons-unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable and GluA2-lacking calcium-permeable (CP) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance, and calcium permeability of CP-AMPARs while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labeling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents-the relative efficacy of the partial agonist kainate (I(KA)/I(Glu) ratio 0.4) and a greater than fivefold potentiation of kainate responses by cyclothiazide-suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia.


Assuntos
Proteínas do Ovo/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas do Ovo/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Ácido Caínico/farmacologia , Masculino , Proteínas de Membrana/genética , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nervo Óptico/citologia , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/metabolismo , Ratos , Receptores de AMPA/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transfecção
11.
Elife ; 122023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37042655

RESUMO

Calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) contribute to many forms of synaptic plasticity and pathology. They can be distinguished from GluA2-containing calcium-impermeable AMPARs by the inward rectification of their currents, which reflects voltage-dependent channel block by intracellular spermine. However, the efficacy of this weakly permeant blocker is differentially altered by the presence of AMPAR auxiliary subunits - including transmembrane AMPAR regulatory proteins, cornichons, and GSG1L - which are widely expressed in neurons and glia. This complicates the interpretation of rectification as a measure of CP-AMPAR expression. Here, we show that the inclusion of the spider toxin analog 1-naphthylacetyl spermine (NASPM) in the intracellular solution results in a complete block of GluA1-mediated outward currents irrespective of the type of associated auxiliary subunit. In neurons from GluA2-knockout mice expressing only CP-AMPARs, intracellular NASPM, unlike spermine, completely blocks outward synaptic currents. Thus, our results identify a functional measure of CP-AMPARs, that is unaffected by their auxiliary subunit content.


Assuntos
Cálcio , Espermina , Camundongos , Animais , Espermina/farmacologia , Espermina/metabolismo , Cálcio/metabolismo , Receptores de AMPA/metabolismo , Neurônios/fisiologia , Cálcio da Dieta , Proteínas de Membrana/metabolismo
12.
J Neurosci ; 31(20): 7511-20, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21593335

RESUMO

The properties of synaptic AMPA receptors (AMPARs) depend on their subunit composition and association with transmembrane AMPAR regulatory proteins (TARPs). Although both GluA2 incorporation and TARP association have been shown to influence AMPAR channel conductance, the manner in which different TARPs modulate the mean channel conductance of GluA2-containing AMPARs is unknown. Using ultrafast agonist application and nonstationary fluctuation analysis, we found that TARP subtypes differentially increase the mean channel conductance, but not the peak open probability, of recombinant GluA2-containing AMPARs. TARP γ-8, in particular, enhances mean channel conductance to a greater degree than γ-2, γ-3, or γ-4. We then examined the action of a use-dependent antagonist of GluA2-containing AMPARs, philanthotoxin-74 (PhTx-74), on recombinant AMPARs and on GluA2-containing AMPARs in cerebellar granule neurons from stargazer mice transfected with TARPs. We found that the rate and extent of channel block varies with TARP subtype, in a manner that correlates linearly with mean channel conductance. Furthermore, block of GluA2-containing AMPARs by polyamine toxins varied depending on whether channels were activated by the full agonist glutamate or the partial agonist kainate, consistent with conductance state-dependent block. Block of GluA2-lacking AMPARs by PhTx-433 is also modulated by TARP association and is a function of agonist efficacy. Our data indicate that channel block by polyamine toxins is sensitive to the mean channel conductance of AMPARs, which varies with TARP subtype and agonist efficacy. Furthermore, our results illustrate the utility of polyamine toxins as sensitive probes of AMPAR channel conductance and suggest the possibility that TARPs may influence their channel properties by selectively stabilizing specific channel conformations, rather than altering the pore structure.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Fenóis/farmacologia , Poliaminas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia , Animais , Canais de Cálcio , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Mutantes , Xenopus laevis
13.
J Physiol ; 590(22): 5723-38, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22988139

RESUMO

Fast excitatory synaptic transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs), whose biophysical properties are dramatically modulated by the presence of transmembrane AMPAR regulatory proteins (TARPs). To help construct a kinetic model that will realistically describe native AMPAR/TARP function, we have examined the single-channel properties of homomeric GluA1 AMPARs in combination with the TARPs, γ-2, γ-4 and γ-5. In a saturating concentration of agonist, each of these AMPAR/TARP combinations gave rise to single-channel currents with multiple conductance levels that appeared intrinsic to the receptor-channel complex, and showed long-lived subconductance states. The open time and burst length distributions of the receptor complexes displayed multiple dwell-time components. In the case of γ-2- and γ-4-associated receptors, these distributions included a long-lived component lasting tens of milliseconds that was absent from both GluA1 alone and γ-5-associated receptors. The open time distributions for each conductance level required two dwell-time components, indicating that at each conductance level the channel occupies a minimum of two kinetically distinct open states. We have explored how these data place novel constraints on possible kinetic models of TARP-associated AMPARs that may be used to define AMPAR-mediated synaptic transmission.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico , Receptores de AMPA/metabolismo , Animais , Linhagem Celular , Humanos , Cinética , Multimerização Proteica , Ratos
14.
Nat Neurosci ; 10(10): 1260-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17873873

RESUMO

Endogenous polyamines profoundly affect the activity of various ion channels, including that of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs). Here we show that stargazin, a transmembrane AMPAR regulatory protein (TARP) known to influence transport, gating and desensitization of AMPARs, greatly reduces block of CP-AMPARs by intracellular polyamines. By decreasing CP-AMPAR affinity for cytoplasmic polyamines, stargazin enhances the charge transfer following single glutamate applications and eliminates the frequency-dependent facilitation seen with repeated applications. In cerebellar stellate cells, which express both synaptic CP-AMPARs and stargazin, we found that the rectification and unitary conductance of channels underlying excitatory postsynaptic currents were matched by those of recombinant AMPARs only when the latter were associated with stargazin. Taken together, our observations establish modulatory actions of stargazin that are specific to CP-AMPARs, and suggest that during synaptic transmission the activity of such receptors, and thus calcium influx, is fundamentally changed by TARPs.


Assuntos
Canais de Cálcio/fisiologia , Neurônios/efeitos dos fármacos , Poliaminas/farmacologia , Receptores de Glutamato/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Cerebelo/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Ácido Glutâmico/farmacologia , Humanos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia , Receptores de Glutamato/efeitos dos fármacos , Espermina/farmacologia , Transfecção
15.
Neuropharmacology ; 198: 108781, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34480912

RESUMO

The functional properties of AMPA receptors shape many of the essential features of excitatory synaptic signalling in the brain, including high-fidelity point-to-point transmission and long-term plasticity. Understanding the behaviour and regulation of single AMPAR channels is fundamental in unravelling how central synapses carry, process and store information. There is now an abundance of data on the importance of alternative splicing, RNA editing, and phosphorylation of AMPAR subunits in determining central synaptic diversity. Furthermore, auxiliary subunits have emerged as pivotal players that regulate AMPAR channel properties and add further diversity. Single-channel studies have helped reveal a fascinating picture of the unique behaviour of AMPAR channels - their concentration-dependent single-channel conductance, the basis of their multiple-conductance states, and the influence of auxiliary proteins in controlling many of their gating and conductance properties. Here we summarize basic hallmarks of AMPAR single-channels, in relation to function, diversity and plasticity. We also present data that reveal an unexpected feature of AMPAR sublevel behaviour. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.


Assuntos
Canais Iônicos/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Animais , Humanos , Transmissão Sináptica
16.
J Physiol ; 588(Pt 20): 3933-41, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20807790

RESUMO

Recent evidence suggests that lithium, which is used in the treatment of bipolar disorders, may act by influencing AMPAR properties at central glutamatergic synapses. While it is clear that lithium potentiates recombinant AMPAR responses in a subunit specific way, the origin of this potentiation is not known. We examined the effects of lithium on native AMPAR channels in CA1 pyramidal cells in hippocampal slices where AMPARs are expected to be associated with auxiliary subunits. We found that lithium produced a selective increase in single-channel open probability (P(open)), with little effect on single-channel conductance or burst length. From the present and previous finding it is likely that lithium causes a reduction in the time to recovery from desensitization, resulting in the observed increase in P(open). This would be consistent with the view that lithium acts like certain other allosteric AMPAR modulators to reduce the time spent in the desensitized state, but differs from those that act by slowing dissociation of glutamate.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Células Piramidais/efeitos dos fármacos , Receptores de AMPA/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Eletrofisiologia , Ácido Glutâmico/farmacologia , Células Piramidais/fisiologia , Ratos
17.
Nat Neurosci ; 8(6): 768-75, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15895086

RESUMO

At many excitatory central synapses, activity produces a lasting change in the synaptic response by modifying postsynaptic AMPA receptors (AMPARs). Although much is known about proteins involved in the trafficking of Ca2+-impermeable (GluR2-containing) AMPARs, little is known about protein partners that regulate subunit trafficking and plasticity of Ca2+-permeable (GluR2-lacking) AMPARs. At cerebellar parallel fiber-stellate cell synapses, activity triggers a novel type of plasticity: Ca2+ influx through GluR2-lacking synaptic AMPARs drives incorporation of GluR2-containing AMPARs, generating rapid, lasting changes in excitatory postsynaptic current properties. Here we examine how glutamate receptor interacting protein (GRIP, also known as AMPAR binding protein or ABP) and protein interacting with C-kinase-1 (PICK) regulate subunit trafficking and plasticity. We find that repetitive synaptic activity triggers loss of synaptic GluR2-lacking AMPARs by selectively disrupting their interaction with GRIP and that PICK drives activity-dependent delivery of GluR2-containing receptors. This dynamic regulation of AMPARs provides a feedback mechanism for controlling Ca2+ permeability of synaptic receptors.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Córtex Cerebelar/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Córtex Cerebelar/efeitos dos fármacos , Proteínas do Citoesqueleto , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Proteínas Nucleares/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
18.
Nat Neurosci ; 8(10): 1310-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16172604

RESUMO

At many excitatory and inhibitory synapses throughout the nervous system, postsynaptic currents become faster as the synapse matures, primarily owing to changes in receptor subunit composition. The origin of the developmental acceleration of AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) remains elusive. We used patch-clamp recordings, electron microscopic immunogold localization of AMPARs, partial three-dimensional reconstruction of the neuropil and numerical simulations of glutamate diffusion and AMPAR activation to examine the factors underlying the developmental speeding of miniature EPSCs in mouse cerebellar granule cells. We found that the main developmental change that permits submillisecond transmission at mature synapses is an alteration in the glutamate concentration waveform as experienced by AMPARs. This can be accounted for by changes in the synaptic structure and surrounding neuropil, rather than by a change in AMPAR properties. Our findings raise the possibility that structural alterations could be a general mechanism underlying the change in the time course of AMPAR-mediated synaptic transmission.


Assuntos
Cerebelo/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Benzodiazepinas/farmacologia , Cerebelo/crescimento & desenvolvimento , Relação Dose-Resposta à Radiação , Condutividade Elétrica , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Ácido Glutâmico/metabolismo , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Modelos Neurológicos , Fibras Nervosas/diagnóstico por imagem , Fibras Nervosas/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Técnicas de Patch-Clamp/métodos , Receptores de AMPA/ultraestrutura , Sinapses/ultraestrutura , Temperatura , Ultrassonografia
19.
Nat Commun ; 10(1): 4312, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541113

RESUMO

Desensitization is a canonical property of ligand-gated ion channels, causing progressive current decline in the continued presence of agonist. AMPA-type glutamate receptors (AMPARs), which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization. Recent cryo-EM studies of AMPAR assemblies show their ion channels to be closed in the desensitized state. Here we present evidence that homomeric Q/R-edited AMPARs still allow ions to flow when the receptors are desensitized. GluA2(R) expressed alone, or with auxiliary subunits (γ-2, γ-8 or GSG1L), generates large fractional steady-state currents and anomalous current-variance relationships. Our results from fluctuation analysis, single-channel recording, and kinetic modeling, suggest that the steady-state current is mediated predominantly by conducting desensitized receptors. When combined with crystallography this unique functional readout of a hitherto silent state enabled us to examine cross-linked cysteine mutants to probe the conformation of the desensitized ligand binding domain of functioning AMPAR complexes.


Assuntos
Receptores de AMPA/química , Receptores de AMPA/metabolismo , Biofísica , Cristalografia por Raios X , Ácido Glutâmico , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Neurociências , Ligação Proteica , Domínios Proteicos , Receptores de AMPA/genética
20.
eNeuro ; 5(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780879

RESUMO

Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study, we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knock-out mice. In Cln3Δex1-6 cells, the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1-6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs.


Assuntos
Cerebelo/metabolismo , Cerebelo/fisiopatologia , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Animais , Modelos Animais de Doenças , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA