Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Biotechnol J ; 22(5): 1299-1311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124291

RESUMO

Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control. The recessive resistance locus rymv2 (OsCPR5.1) had been identified in African rice (Oryza glaberrima), however, introgression into Oryza sativa ssp. japonica and indica remains challenging due to crossing barriers. Here, we evaluated whether CRISPR/Cas9 genome editing of the two rice nucleoporin paralogs OsCPR5.1 (RYMV2) and OsCPR5.2 can be used to introduce RYMV resistance into the japonica variety Kitaake. Both paralogs had been shown to complement the defects of the Arabidopsis atcpr5 mutant, indicating partial redundancy. Despite striking sequence and structural similarities between the two paralogs, only oscpr5.1 loss-of-function mutants were fully resistant, while loss-of-function oscpr5.2 mutants remained susceptible, intimating that OsCPR5.1 plays a specific role in RYMV susceptibility. Notably, edited lines with short in-frame deletions or replacements in the N-terminal domain (predicted to be unstructured) of OsCPR5.1 were hypersusceptible to RYMV. In contrast to mutations in the single Arabidopsis AtCPR5 gene, which caused severely dwarfed plants, oscpr5.1 and oscpr5.2 single and double knockout mutants showed neither substantial growth defects nor symptoms indicative lesion mimic phenotypes, possibly reflecting functional differentiation. The specific editing of OsCPR5.1, while maintaining OsCPR5.2 activity, provides a promising strategy for generating RYMV-resistance in elite Oryza sativa lines as well as for effective stacking with other RYMV resistance genes or other traits.


Assuntos
Arabidopsis , Oryza , Vírus de Plantas , Oryza/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Arabidopsis/genética , Edição de Genes
2.
Mol Plant Microbe Interact ; 36(1): 73-77, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36537805

RESUMO

The bacterial plant pathogen Xanthomonas oryzae pv. oryzae is responsible for the foliar rice bacterial blight disease. Genetically contrasted, continent-specific, sublineages of this species can cause important damages to rice production both in Asia and Africa. We report on the genome of the CIX2779 strain of this pathogen, previously named NAI1 and originating from Niger. Oxford Nanopore long reads assembly and Illumina short reads polishing produced a genome sequence composed of a 4,725,792-bp circular chromosome and a 39,798-bp-long circular plasmid designated pCIX2779_1. The chromosome structure and base-level sequence are highly related to reference strains of African X. oryzae pv. oryzae and encode identical transcription activator-like effectors for virulence. Importantly, our in silico analysis strongly indicates that pCIX2779_1 is a genuine conjugative plasmid, the first indigenous one sequenced from an African strain of the X. oryzae species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Oryza , Xanthomonas , Oryza/microbiologia , Plasmídeos , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/genética , Doenças das Plantas/microbiologia , Proteínas de Bactérias/genética
3.
Phytopathology ; 113(7): 1185-1191, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36611232

RESUMO

Evolutionarily, early-branching xanthomonads, also referred to as clade-1 xanthomonads, include major plant pathogens, most of which colonize monocotyledonous plants. Seven species have been validly described, among them the two sugarcane pathogens Xanthomonas albilineans and Xanthomonas sacchari, as well as Xanthomonas translucens, which infects small-grain cereals and diverse grasses but also asparagus and pistachio trees. Single-gene sequencing and genomic approaches have indicated that this clade likely contains more, yet-undescribed species. In this study, we sequenced representative strains of three novel species using long-read sequencing technology. Xanthomonas campestris pv. phormiicola strain CFBP 8444 causes bacterial streak on New Zealand flax, another monocotyledonous plant. Xanthomonas sp. strain CFBP 8443 has been isolated from common bean, and Xanthomonas sp. strain CFBP 8445 originated from banana. Complete assemblies of the chromosomes confirmed their unique phylogenetic position within clade 1 of Xanthomonas. Genome mining revealed novel genetic features, hitherto undescribed in other members of the Xanthomonas genus. In strain CFBP 8444, we identified genes related to the synthesis of coronatine-like compounds, a phytotoxin produced by several pseudomonads, which raises interesting questions about the evolution and pathogenicity of this pathogen. Furthermore, strain CFBP 8444 was found to contain a second, atypical flagellar gene cluster in addition to the canonical flagellar gene cluster. Overall, this research represents an important step toward better understanding the evolutionary history and biology of early-branching xanthomonads.


Assuntos
Flagelina , Xanthomonas , Flagelina/genética , Filogenia , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma
4.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628368

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) strains that cause bacterial leaf blight (BLB) limit rice (Oryza sativa) production and require breeding more resistant varieties. Transcription activator-like effectors (TALEs) activate transcription to promote leaf colonization by binding to specific plant host DNA sequences termed effector binding elements (EBEs). Xoo major TALEs universally target susceptibility genes of the SWEET transporter family. TALE-unresponsive alleles of clade III OsSWEET susceptibility gene promoter created with genome editing confer broad resistance on Asian Xoo strains. African Xoo strains rely primarily on the major TALE TalC, which targets OsSWEET14. Although the virulence of a talC mutant strain is severely impaired, abrogating OsSWEET14 induction with genome editing does not confer equivalent resistance on African Xoo. To address this contradiction, we postulated the existence of a TalC target susceptibility gene redundant with OsSWEET14. Bioinformatics analysis identified a rice locus named ATAC composed of the INCREASED LEAF INCLINATION 2 (ILI2) gene and a putative lncRNA that are shown to be bidirectionally upregulated in a TalC-dependent fashion. Gain-of-function approaches with designer TALEs inducing ATAC sequences did not complement the virulence of a Xoo strain defective for SWEET gene activation. While editing the TalC EBE at the ATAC loci compromised TalC-mediated induction, multiplex edited lines with mutations at the OsSWEET14 and ATAC loci remained essentially susceptible to African Xoo strains. Overall, this work indicates that ATAC is a probable TalC off-target locus but nonetheless documents the first example of divergent transcription activation by a native TALE during infection.


Assuntos
Oryza , Efetores Semelhantes a Ativadores de Transcrição , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Talco/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas
5.
PLoS Pathog ; 14(6): e1007092, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29864161

RESUMO

Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene.


Assuntos
Proteínas de Bactérias/genética , Resistência à Doença/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Xanthomonas/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/genética , Fatores de Transcrição/genética
6.
Mol Plant Microbe Interact ; 31(4): 471-480, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29143556

RESUMO

Transcription activator-like effectors (TALEs) are proteins found in the genus Xanthomonas of phytopathogenic bacteria. These proteins enter the nucleus of cells in the host plant and can induce the expression of susceptibility genes (S genes), triggering disease. TALEs bind the promoter region of S genes following a specific code, which allows the prediction of binding sites based on TALEs amino acid sequences. New candidate S genes can then be discovered by finding the intersection between genes induced in the presence of TALEs and genes containing predicted effector binding elements. By contrasting differential expression data and binding site predictions across different datasets, patterns of TALE diversification or convergence may be unveiled, but this requires the seamless integration of different genomic and transcriptomic data. With this in mind, we present daTALbase, a curated relational database that integrates TALE-related data including bacterial TALE sequences, plant promoter sequences, predicted TALE binding sites, transcriptomic data of host plants in response to TALE-harboring bacteria, and other associated data. The database can be explored to uncover new candidate S genes as well as to study variation in TALE repertories and their corresponding targets. The first version of the database here presented includes data for Oryza sp.-Xanthomonas pv. oryzae interactions. Future versions of the database will incorporate information for other pathosystems involving TALEs.


Assuntos
Proteínas de Bactérias/metabolismo , Bases de Dados Genéticas , Genoma Bacteriano , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transcriptoma/genética , Genes Bacterianos , Internet , Filogenia , Interface Usuário-Computador , Xanthomonas/genética
7.
Plant Biotechnol J ; 15(3): 306-317, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27539813

RESUMO

As a key virulence strategy to cause bacterial leaf blight, Xanthomonas oryzae pv. oryzae (Xoo) injects into the plant cell DNA-binding proteins called transcription activator-like effectors (TALEs) that bind to effector-binding elements (EBEs) in a sequence-specific manner, resulting in host gene induction. TALEs AvrXa7, PthXo3, TalC and Tal5, found in geographically distant Xoo strains, all target OsSWEET14, thus considered as a pivotal TALE target acting as major susceptibility factor during rice-Xoo interactions. Here, we report the generation of an allele library of the OsSWEET14 promoter through stable expression of TALE-nuclease (TALEN) constructs in rice. The susceptibility level of lines carrying mutations in AvrXa7, Tal5 or TalC EBEs was assessed. Plants edited in AvrXa7 or Tal5 EBEs were resistant to bacterial strains relying on the corresponding TALE. Surprisingly, although indels within TalC EBE prevented OsSWEET14 induction in response to BAI3 wild-type bacteria relying on TalC, loss of TalC responsiveness failed to confer resistance to this strain. The TalC EBE mutant line was, however, resistant to a strain expressing an artificial SWEET14-inducing TALE whose EBE was also edited in this line. This work offers the first set of alleles edited in TalC EBE and uncovers a distinct, broader range of activities for TalC compared to AvrXa7 or Tal5. We propose the existence of additional targets for TalC beyond SWEET14, suggesting that TALE-mediated plant susceptibility may result from induction of several, genetically redundant, host susceptibility genes by a single effector.


Assuntos
Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Xanthomonas/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia
8.
Proc Natl Acad Sci U S A ; 108(7): 2975-80, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282655

RESUMO

The virulence of Pseudomonas syringae and many other proteobacterial pathogens is dependent on complex repertoires of effector proteins injected into host cells by type III secretion systems. The 28 well-expressed effector genes in the repertoire of the model pathogen P. syringae pv. tomato DC3000 were deleted to produce polymutant DC3000D28E. Growth of DC3000D28E in Nicotiana benthamiana was symptomless and 4 logs lower than that of DC3000ΔhopQ1-1, which causes disease in this model plant. DC3000D28E seemed functionally effectorless but otherwise WT in diagnostic phenotypes relevant to plant interactions (for example, ability to inject the AvrPto-Cya reporter into N. benthamiana). Various effector genes were integrated by homologous recombination into native loci or by a programmable or random in vivo assembly shuttle (PRIVAS) system into the exchangeable effector locus in the Hrp pathogenicity island of DC3000D28E. The latter method exploited dual adapters and recombination in yeast for efficient assembly of PCR products into programmed or random combinations of multiple effector genes. Native and PRIVAS-mediated integrations were combined to identify a minimal functional repertoire of eight effector genes that restored much of the virulence of DC3000ΔhopQ1-1 in N. benthamiana, revealing a hierarchy in effector function: AvrPtoB acts with priority in suppressing immunity, enabling other effectors to promote further growth (HopM1 and HopE1), chlorosis (HopG1), lesion formation (HopAM1-1), and near full growth and symptom production (AvrE, HopAA1-1, and/or HopN1 functioning synergistically with the previous effectors). DC3000D28E, the PRIVAS method, and minimal functional repertoires provide new resources for probing the plant immune system.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Proteínas de Bactérias/genética , Primers do DNA/genética , Vetores Genéticos/genética , Ilhas Genômicas/genética , Reação em Cadeia da Polimerase , Especificidade da Espécie , Nicotiana/metabolismo , Virulência
9.
Elife ; 122023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37337668

RESUMO

Bacterial leaf blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), threatens global food security and the livelihood of small-scale rice producers. Analyses of Xoo collections from Asia, Africa and the Americas demonstrated complete continental segregation, despite robust global rice trade. Here, we report unprecedented BB outbreaks in Tanzania. The causative strains, unlike endemic African Xoo, carry Asian-type TAL effectors targeting the sucrose transporter SWEET11a and iTALes suppressing Xa1. Phylogenomics clustered these strains with Xoo from Southern-China. African rice varieties do not carry effective resistance. To protect African rice production against this emerging threat, we developed a hybrid CRISPR-Cas9/Cpf1 system to edit all known TALe-binding elements in three SWEET promoters of the East African elite variety Komboka. The edited lines show broad-spectrum resistance against Asian and African strains of Xoo, including strains recently discovered in Tanzania. The strategy could help to protect global rice crops from BB pandemics.


Assuntos
Oryza , Xanthomonas , Edição de Genes , Oryza/genética , Efetores Semelhantes a Ativadores de Transcrição , Xanthomonas/genética , Tanzânia , Doenças das Plantas/microbiologia , Resistência à Doença/genética
10.
Front Microbiol ; 12: 817815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35310401

RESUMO

The Xanthomonas translucens species comprises phytopathogenic bacteria that can cause serious damage to cereals and to forage grasses. So far, the genomic resources for X. translucens were limited, which hindered further understanding of the host-pathogen interactions at the molecular level and the development of disease-resistant cultivars. To this end, we complemented the available complete genome sequence of the X. translucens pv. translucens pathotype strain DSM 18974 by sequencing the genomes of all the other 10 X. translucens pathotype strains using PacBio long-read technology and assembled complete genome sequences. Phylogeny based on average nucleotide identity (ANI) revealed three distinct clades within the species, which we propose to classify as clades Xt-I, Xt-II, and Xt-III. In addition to 2,181 core X. translucens genes, a total of 190, 588, and 168 genes were found to be exclusive to each clade, respectively. Moreover, 29 non-transcription activator-like effector (TALE) and 21 TALE type III effector classes were found, and clade- or strain-specific effectors were identified. Further investigation of these genes could help to identify genes that are critically involved in pathogenicity and/or host adaptation, setting the grounds for the development of new resistant cultivars.

11.
PLoS One ; 16(9): e0255470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499670

RESUMO

TBR225 is one of the most popular commercial rice varieties in Northern Vietnam. However, this variety is highly susceptible to bacterial leaf blight (BLB), a disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which can lead to important yield losses. OsSWEET14 belongs to the SWEET gene family that encodes sugar transporters. Together with other Clade III members, it behaves as a susceptibility (S) gene whose induction by Asian Xoo Transcription-Activator-Like Effectors (TALEs) is absolutely necessary for disease. In this study, we sought to introduce BLB resistance in the TBR225 elite variety. First, two Vietnamese Xoo strains were shown to up-regulate OsSWEET14 upon TBR225 infection. To investigate if this induction is connected with disease susceptibility, nine TBR225 mutant lines with mutations in the AvrXa7, PthXo3 or TalF TALEs DNA target sequences of the OsSWEET14 promoter were obtained using the CRISPR/Cas9 editing system. Genotyping analysis of T0 and T1 individuals showed that mutations were stably inherited. None of the examined agronomic traits of three transgene-free T2 edited lines were significantly different from those of wild-type TBR225. Importantly, one of these T2 lines, harboring the largest homozygous 6-bp deletion, displayed decreased OsSWEET14 expression as well as a significantly reduced susceptibility to a Vietnamese Xoo strains and complete resistance to another one. Our findings indicate that CRISPR/Cas9 editing conferred an improved BLB resistance to a Vietnamese commercial elite rice variety.


Assuntos
Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Xanthomonas/fisiologia , Sistemas CRISPR-Cas , Resistência à Doença/genética , Suscetibilidade a Doenças , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética
12.
Sci Rep ; 11(1): 24141, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921170

RESUMO

Non-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22 nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences, with about half of them encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and xisRNA loci predominantly coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Folhas de Planta , RNA de Plantas , Pequeno RNA não Traduzido , Regulação para Cima , Xanthomonas/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , RNA de Plantas/biossíntese , RNA de Plantas/genética , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética
13.
Mol Plant Microbe Interact ; 22(5): 538-50, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19348572

RESUMO

The model pathogen Ralstonia solanacearum GMI1000 is the causal agent of the bacterial wilt disease that attacks many solanaceous plants and other hosts but not tobacco (Nicotiana spp.). We found that two type III secretion system effector genes, avrA and popP1, are limiting the host range of strain GMI1000 on at least three tobacco species (N. tabacum, N. benthamiana, and N. glutinosa). Both effectors elicit the hypersensitive response (HR) on these tobacco species, although in different manners; AvrA is the major determinant recognized by N. tabacum and N. benthamiana, while PopP1 appears to be the major HR elicitor on N. glutinosa. Only the double inactivation of the avrA and popP1 genes allowed GMI1000 to wilt tobacco plants, thus showing that GMI1000 intrinsically possesses the functions necessary to wilt tobacco plants. A focused analysis on AvrA revealed that the first 58 N-terminal amino acids are sufficient to direct its injection into plant cells. We identified a hypervariable region in avrA, which contains variable numbers of tandem repeats (VNTR), each composed of 12 base pairs. We show that an 18-amino acid region in which the VNTR insertion occurs is an important domain involved in HR elicitation on N. benthamiana. avrA appears to be the target of various DNA insertions or mobile elements that probably allow R. solanacearum to evade the recognition and defense responses of tobacco.


Assuntos
Proteínas de Bactérias/genética , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Western Blotting , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Repetições Minissatélites/genética , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Folhas de Planta/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Nicotiana/classificação
14.
Nat Biotechnol ; 37(11): 1344-1350, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659337

RESUMO

Bacterial blight of rice is an important disease in Asia and Africa. The pathogen, Xanthomonas oryzae pv. oryzae (Xoo), secretes one or more of six known transcription-activator-like effectors (TALes) that bind specific promoter sequences and induce, at minimum, one of the three host sucrose transporter genes SWEET11, SWEET13 and SWEET14, the expression of which is required for disease susceptibility. We used CRISPR-Cas9-mediated genome editing to introduce mutations in all three SWEET gene promoters. Editing was further informed by sequence analyses of TALe genes in 63 Xoo strains, which revealed multiple TALe variants for SWEET13 alleles. Mutations were also created in SWEET14, which is also targeted by two TALes from an African Xoo lineage. A total of five promoter mutations were simultaneously introduced into the rice line Kitaake and the elite mega varieties IR64 and Ciherang-Sub1. Paddy trials showed that genome-edited SWEET promoters endow rice lines with robust, broad-spectrum resistance.


Assuntos
Resistência à Doença , Proteínas de Membrana Transportadoras/genética , Oryza/crescimento & desenvolvimento , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Xanthomonas/genética
15.
Front Microbiol ; 9: 1657, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127769

RESUMO

Rice bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae (Xoo) which injects Transcription Activator-Like Effectors (TALEs) into the host cell to modulate the expression of target disease susceptibility genes. Xoo major-virulence TALEs universally target susceptibility genes of the SWEET sugar transporter family. TALE-unresponsive alleles of OsSWEET genes have been identified in the rice germplasm or created by genome editing and confer resistance to BLB. In recent years, BLB has become one of the major biotic constraints to rice cultivation in Mali. To inform the deployment of alternative sources of resistance in this country, rice lines carrying alleles of OsSWEET14 unresponsive to either TalF (formerly Tal5) or TalC, two important TALEs previously identified in West African Xoo, were challenged with a panel of strains recently isolated in Mali and were found to remain susceptible to these isolates. The characterization of TALE repertoires revealed that talF and talC specific molecular markers were simultaneously present in all surveyed Malian strains, suggesting that the corresponding TALEs are broadly deployed by Malian Xoo to redundantly target the OsSWEET14 gene promoter. Consistent with this, the capacity of most Malian Xoo to induce OsSWEET14 was unaffected by either talC- or talF-unresponsive alleles of this gene. Long-read sequencing and assembly of eight Malian Xoo genomes confirmed the widespread occurrence of active TalF and TalC variants and provided a detailed insight into the diversity of TALE repertoires. All sequenced strains shared nine evolutionary related tal effector genes. Notably, a new TalF variant that is unable to induce OsSWEET14 was identified. Furthermore, two distinct TalB variants were shown to have lost the ability to simultaneously induce two susceptibility genes as previously reported for the founding members of this group from strains MAI1 and BAI3. Yet, both new TalB variants retained the ability to induce one or the other of the two susceptibility genes. These results reveal molecular and functional differences in tal repertoires and will be important for the sustainable deployment of broad-spectrum and durable resistance to BLB in West Africa.

16.
Front Plant Sci ; 8: 645, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507553

RESUMO

Simultaneous infection of a single plant by various pathogen species is increasingly recognized as an important modulator of host resistance and a driver of pathogen evolution. Because plants in agro-ecosystems are the target of a multitude of pathogenic microbes, co-infection could be frequent, and consequently important to consider. This is particularly true for rapidly intensifying crops, such as rice in Africa. This study investigated potential interactions between pathogens causing two of the major rice diseases in Africa: the Rice yellow mottle virus (RYMV) and the bacterium Xanthomonas oryzae pathovar oryzicola (Xoc) in order to: 1/ document virus-bacteria co-infection in rice in the field, 2/ explore experimentally their consequences in terms of symptom development and pathogen multiplication, 3/ test the hypothesis of underlying molecular mechanisms of interactions and 4/ explore potential evolutionary consequences. Field surveys in Burkina Faso revealed that a significant proportion of rice fields were simultaneously affected by the two diseases. Co-infection leads to an increase in bacterial specific symptoms, while a decrease in viral load is observed compared to the mono-infected mock. The lack of effect found when using a bacterial mutant for an effector specifically inducing expression of a small RNA regulatory protein, HEN1, as well as a viral genotype-specific effect, both suggest a role for gene silencing mechanisms mediating the within-plant interaction between RYMV and Xoc. Potential implications for pathogen evolution could not be inferred because genotype-specific effects were found only for pathogens originating from different countries, and consequently not meeting in the agrosystem. We argue that pathogen-pathogen-host interactions certainly deserve more attention, both from a theoretical and applied point of view.

17.
Mol Plant Microbe Interact ; 18(9): 938-49, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16167764

RESUMO

A 70-mer oligonucleotide-based DNA microarray covering 5,074 of the 5,120 predicted genes from Ralstonia solanacearum has been generated and used to investigate the repertoire of genes that are under the control of the transcription activator HrpB, which governs pathogenicity in this plant pathogenic bacterium. This study identified 143 hrpB up-regulated genes and 50 hrpB down-regulated genes. In addition to extending the repertoire of type III effector proteins with 26 new candidates, this work demonstrates that the hrpB regulon extends beyond type III secretion system-related functions to include a number of genes governing chemotaxy, biosynthesis or catabolism of various low-molecular-weight chemical compounds, and siderophore production and uptake. The presence of several transcripttional regulators and a cluster of genes predicted to encode the synthesis of an acylhomoserine lactone together with the absence of a consensus hrpII box in the promoter of a significant proportion of the hrpB-regulated genes suggest that, for some genes, hrpB regulation might be indirect. Altogether, the data indicate that hrpB acts as a master regulatory gene governing a physiological swing associated with the shift from saprophytic to parasitic life.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade , Fatores de Transcrição/genética , Sequência de Bases , DNA Bacteriano/genética , Genoma Bacteriano , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Regulon , Virulência/genética
18.
Front Plant Sci ; 6: 545, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284082

RESUMO

Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.

19.
Genome Announc ; 3(5)2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450740

RESUMO

Strains of Xanthomonas translucens pv. graminis cause bacterial wilt on several forage grasses. A draft genome sequence of pathotype strain CFBP 2053 was generated to facilitate the discovery of new pathogenicity factors and to develop diagnostic tools for the species X. translucens.

20.
Genome Announc ; 3(1)2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25676771

RESUMO

Xanthomonas translucens pv. cerealis is the causal agent of bacterial leaf streak on true grasses. The genome of the pathotype strain CFBP 2541 was sequenced in order to decipher mechanisms that provoke disease and to elucidate the role of transcription activator-like (TAL) type III effectors in pathogenicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA