Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(37): 20214-20228, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35881910

RESUMO

We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.


Assuntos
COVID-19 , Nanoestruturas , Humanos , SARS-CoV-2 , DNA , Ligação Proteica
2.
Small ; 19(44): e2207239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37104850

RESUMO

Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal-to-noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52-fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near-field enhancement due to the cavity-induced activation of the PF, PC band structure-mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose-response characterization of a sandwich immunoassay for human interleukin-6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL-1 and 100 fg mL-1 in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.


Assuntos
Nanopartículas , Humanos , Fluorescência
3.
Proc Natl Acad Sci U S A ; 117(37): 22727-22735, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868442

RESUMO

The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per µL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.


Assuntos
Infecções por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Pneumonia Viral/diagnóstico , Testes Imediatos/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Humanos , Limite de Detecção , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/normas , Mucosa Nasal/virologia , Pandemias , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , SARS-CoV-2 , Smartphone
4.
Angew Chem Int Ed Engl ; 62(16): e202217932, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36622783

RESUMO

Exosomal microRNAs (miRNAs) have considerable potential as pivotal biomarkers to monitor cancer development, dis-ease progression, treatment effects and prognosis. Here, we report an efficient target recycling amplification process (TRAP) for the digital detection of miRNAs using photonic resonator absorption microscopy. We achieve multiplex digital detection with sub-attomolar sensitivity in 20 minutes, robust selectivity for single nucleotide variants, and a broad dynamic range from 1 aM to 1 pM. Compared with traditional qRT-PCR, TRAP showed similar accuracy in profiling exosomal miRNAs derived from cancer cells, but also exhibited at least 31-fold and 61-fold enhancement in the limits of miRNA-375 and miRNA-21 detection, respectively. The TRAP approach is ideal for exosomal or circulating miRNA biomarker quantification, where the miRNAs are present in low concentrations or sample volume, with potentials for frequent, low-cost, and minimally invasive point-of-care testing.


Assuntos
Técnicas Biossensoriais , Exossomos , MicroRNAs , MicroRNAs/análise , Microscopia , Técnicas de Amplificação de Ácido Nucleico , Fótons , Prognóstico , Exossomos/química
5.
J Am Chem Soc ; 144(4): 1498-1502, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34928591

RESUMO

Several applications in health diagnostics, food, safety, and environmental monitoring require rapid, simple, selective, and quantitatively accurate viral load monitoring. Here, we introduce the first label-free biosensing method that rapidly detects and quantifies intact virus in human saliva with single-virion resolution. Using pseudotype SARS-CoV-2 as a representative target, we immobilize aptamers with the ability to differentiate active from inactive virions on a photonic crystal, where the virions are captured through affinity with the spike protein displayed on the outer surface. Once captured, the intrinsic scattering of the virions is amplified and detected through interferometric imaging. Our approach analyzes the motion trajectory of each captured virion, enabling highly selective recognition against nontarget virions, while providing a limit of detection of 1 × 103 copies/mL at room temperature. The approach offers an alternative to enzymatic amplification assays for point-of-collection diagnostics.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Ácidos Nucleicos Imobilizados/química , SARS-CoV-2/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Humanos , Limite de Detecção , Microscopia/métodos , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , SARS-CoV-2/química , Saliva/virologia , Glicoproteína da Espícula de Coronavírus/química
6.
Analyst ; 147(17): 3838-3853, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35726910

RESUMO

Rapid, simple, inexpensive, accurate, and sensitive point-of-care (POC) detection of viral pathogens in bodily fluids is a vital component of controlling the spread of infectious diseases. The predominant laboratory-based methods for sample processing and nucleic acid detection face limitations that prevent them from gaining wide adoption for POC applications in low-resource settings and self-testing scenarios. Here, we report the design and characterization of an integrated system for rapid sample-to-answer detection of a viral pathogen in a droplet of whole blood comprised of a 2-stage microfluidic cartridge for sample processing and nucleic acid amplification, and a clip-on detection instrument that interfaces with the image sensor of a smartphone. The cartridge is designed to release viral RNA from Zika virus in whole blood using chemical lysis, followed by mixing with the assay buffer for performing reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) reactions in six parallel microfluidic compartments. The battery-powered handheld detection instrument uniformly heats the compartments from below, and an array of LEDs illuminates from above, while the generation of fluorescent reporters in the compartments is kinetically monitored by collecting a series of smartphone images. We characterize the assay time and detection limits for detecting Zika RNA and gamma ray-deactivated Zika virus spiked into buffer and whole blood and compare the performance of the same assay when conducted in conventional PCR tubes. Our approach for kinetic monitoring of the fluorescence-generating process in the microfluidic compartments enables spatial analysis of early fluorescent "bloom" events for positive samples, in an approach called "Spatial LAMP" (S-LAMP). We show that S-LAMP image analysis reduces the time required to designate an assay as a positive test, compared to conventional analysis of the average fluorescent intensity of the entire compartment. S-LAMP enables the RT-LAMP process to be as short as 22 minutes, resulting in a total sample-to-answer time in the range of 17-32 minutes to distinguish positive from negative samples, while demonstrating a viral RNA detection as low as 2.70 × 102 copies per µl, and a gamma-irradiated virus of 103 virus particles in a single 12.5 µl droplet blood sample.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Microfluídica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , Sensibilidade e Especificidade , Smartphone , Instrumentos Cirúrgicos , Zika virus/genética , Infecção por Zika virus/diagnóstico
7.
Curr Opin Solid State Mater Sci ; 26(1): 100966, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34840515

RESUMO

The COVID-19 pandemic revealed fundamental limitations in the current model for infectious disease diagnosis and serology, based upon complex assay workflows, laboratory-based instrumentation, and expensive materials for managing samples and reagents. The lengthy time delays required to obtain test results, the high cost of gold-standard PCR tests, and poor sensitivity of rapid point-of-care tests contributed directly to society's inability to efficiently identify COVID-19-positive individuals for quarantine, which in turn continues to impact return to normal activities throughout the economy. Over the past year, enormous resources have been invested to develop more effective rapid tests and laboratory tests with greater throughput, yet the vast majority of engineering and chemistry approaches are merely incremental improvements to existing methods for nucleic acid amplification, lateral flow test strips, and enzymatic amplification assays for protein-based biomarkers. Meanwhile, widespread commercial availability of new test kits continues to be hampered by the cost and time required to develop single-use disposable microfluidic plastic cartridges manufactured by injection molding. Through development of novel technologies for sensitive, selective, rapid, and robust viral detection and more efficient approaches for scalable manufacturing of microfluidic devices, we can be much better prepared for future management of infectious pathogen outbreaks. Here, we describe how photonic metamaterials, graphene nanomaterials, designer DNA nanostructures, and polymers amenable to scalable additive manufacturing are being applied towards overcoming the fundamental limitations of currently dominant COVID-19 diagnostic approaches. In this paper, we review how several distinct classes of nanomaterials and nanochemistry enable simple assay workflows, high sensitivity, inexpensive instrumentation, point-of-care sample-to-answer virus diagnosis, and rapidly scaled manufacturing.

8.
Proc Natl Acad Sci U S A ; 116(39): 19362-19367, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501320

RESUMO

Circulating exosomal microRNA (miR) represents a new class of blood-based biomarkers for cancer liquid biopsy. The detection of miR at a very low concentration and with single-base discrimination without the need for sophisticated equipment, large volumes, or elaborate sample processing is a challenge. To address this, we present an approach that is highly specific for a target miR sequence and has the ability to provide "digital" resolution of individual target molecules with high signal-to-noise ratio. Gold nanoparticle tags are prepared with thermodynamically optimized nucleic acid toehold probes that, when binding to a target miR sequence, displace a probe-protecting oligonucleotide and reveal a capture sequence that is used to selectively pull down the target-probe-nanoparticle complex to a photonic crystal (PC) biosensor surface. By matching the surface plasmon-resonant wavelength of the nanoparticle tag to the resonant wavelength of the PC nanostructure, the reflected light intensity from the PC is dramatically and locally quenched by the presence of each individual nanoparticle, enabling a form of biosensor microscopy that we call Photonic Resonator Absorption Microscopy (PRAM). Dynamic PRAM imaging of nanoparticle tag capture enables direct 100-aM limit of detection and single-base mismatch selectivity in a 2-h kinetic discrimination assay. The PRAM assay demonstrates that ultrasensitivity (<1 pM) and high selectivity can be achieved on a direct readout diagnostic.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , MicroRNA Circulante/análise , MicroRNA Circulante/genética , Microscopia/instrumentação , Fótons , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , MicroRNA Circulante/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/análise , Nanoestruturas/química , Oligonucleotídeos/química , Mutação Puntual , Sensibilidade e Especificidade
9.
Sensors (Basel) ; 22(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161831

RESUMO

In recent years, the biosensor research community has made rapid progress in the development of nanostructured materials capable of amplifying the interaction between light and biological matter. A common objective is to concentrate the electromagnetic energy associated with light into nanometer-scale volumes that, in many cases, can extend below the conventional Abbé diffraction limit. Dating back to the first application of surface plasmon resonance (SPR) for label-free detection of biomolecular interactions, resonant optical structures, including waveguides, ring resonators, and photonic crystals, have proven to be effective conduits for a wide range of optical enhancement effects that include enhanced excitation of photon emitters (such as quantum dots, organic dyes, and fluorescent proteins), enhanced extraction from photon emitters, enhanced optical absorption, and enhanced optical scattering (such as from Raman-scatterers and nanoparticles). The application of photonic metamaterials as a means for enhancing contrast in microscopy is a recent technological development. Through their ability to generate surface-localized and resonantly enhanced electromagnetic fields, photonic metamaterials are an effective surface for magnifying absorption, photon emission, and scattering associated with biological materials while an imaging system records spatial and temporal patterns. By replacing the conventional glass microscope slide with a photonic metamaterial, new forms of contrast and enhanced signal-to-noise are obtained for applications that include cancer diagnostics, infectious disease diagnostics, cell membrane imaging, biomolecular interaction analysis, and drug discovery. This paper will review the current state of the art in which photonic metamaterial surfaces are utilized in the context of microscopy.


Assuntos
Técnicas Biossensoriais , Microscopia , Óptica e Fotônica , Fótons , Ressonância de Plasmônio de Superfície
10.
Anal Chem ; 92(5): 3627-3635, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031784

RESUMO

Sensitive and specific quantification of protein biomarkers is important in medical diagnostics, academic research, and pharmaceutical development. However, multiple binding steps in conventional sandwich immunoassay protocols result in high assay hands-on-time and delayed results. This is particularly relevant for medical diagnostics, where assay turn-around-time can have an immense impact on patient outcomes. To address this limitation, we report the assembly of nanosensors prepared using DNA-antibody conjugates, which combine capture and detection antibody binding steps by facilitating rapid antigen capture. Following antigen binding, detection antibodies are released using chemically induced complex rearrangement. A panel of 12 chemical additives are characterized to identify melting point depressants capable of rapidly denaturing double stranded DNA (dsDNA) linkers, and 8 compounds are demonstrated to be capable of disrupting dsDNA while maintaining the integrity of protein binding. This technique is then validated for the measurement of the heart attack indicator cardiac troponin I and is shown to successfully combine antigen binding steps while also increasing detection sensitivity 42×. Linker-mediated immunoassays are also demonstrated to provide robust quantification in human serum and are shown to be compatible with each of the most commonly used immunoassay detection modalities.


Assuntos
Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Nanotecnologia/métodos , Anticorpos/imunologia , Anticorpos/metabolismo , DNA/química , DNA/metabolismo , Desnaturação de Ácido Nucleico , Estreptavidina/análise
12.
Nano Lett ; 19(8): 5297-5303, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31315400

RESUMO

Nanoantenna-microcavity hybrid systems offer unique platforms for the study and manipulation of light at the nanoscale, since their constituents have either low mode volume or long photon storage time. A nearby dielectric optical cavity can modify the photonic environment surrounding a plasmonic nanoantenna, presenting opportunities to sculpt its spectral response. However, matching the polar opposites for enhanced light-matter interactions remains challenging, as the antenna can be rendered transparent by the cavity through destructive Fano interferences. In this work, we tackle this issue by offering a new plasmonic-photonic interaction framework. By coupling to a photonic crystal guided resonance, a gold nanostar delivers 1 order of magnitude amplified absorption, and the ultrasharp Lorentzian-line-shaped hybrid resonance is continuously tunable over a broad spectral range by scanning of the incidence angle. Our intuitive coupled mode model reveals that a distinct optical pathway highlighting the cavity-mediated activation of nanoantennas is key for absorption enhancement. Moreover, we show that the line width of the enhancement can be widely tunable, and that the maximum power transferred to the antennas is attained under critical coupling. The cooperative hybrid system opens up new opportunities to boost a wealth of applications including ultrasensitive molecular spectroscopy, plasmonic hot carrier chemistry, thermoplasmonic, spontaneous emission enhancement, nanolasers, and many more.

13.
Opt Express ; 27(5): 7196-7212, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876288

RESUMO

The design of an all-dielectric nanoantenna based on nonradiating "anapole" modes is studied for biosensing applications in an aqueous environment, using FDTD electromagnetic simulation. The strictly confined electromagnetic field within a circular or rectangular opening at the center of a cylindrical silicon disk produces a single point electromagnetic hotspot with up to 6.5x enhancement of |E|, for the 630-650 nm wavelength range, and we can increase the value up to 25x by coupling additional electromagnetic energy from an underlying PEC-backed substrate. We characterize the effects of the substrate design and slot dimensions on the field enhancement magnitude, for devices operating in a water medium.

14.
IEEE Sens J ; 19(2): 508-514, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31579394

RESUMO

We report on the adaptation of a smartphone's rear-facing camera to function as a spectrometer that measures the spectrum of light scattered by common paper-based assay test strips. We utilize a cartridge that enables a linear series of test pads in a single strip to be swiped past the read head of the instrument while the phone's camera records video. The strip is housed in a custom-fabricated cartridge that slides through the instrument to facilitate illumination with white light from the smartphone's flash LED that is directed through an optical fiber. We demonstrate the ability to detect subtle changes in the scattered spectrum that enables quantitative analysis of single-analyte and multi-analyte strips. The demonstrated capability can be applied to broad classes of paper-based assays in which visual observation of colored strips is not sufficiently quantitative, and for which analysis of red-green-blue pixel values of a camera image are not capable of measuring complex scattered spectra.

15.
IEEE Sens J ; 18(4): 1464-1473, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29881332

RESUMO

We report on the implementation of an automated platform for detecting the presence of an antibody biomarker for human papillomavirus-associated oropharyngeal cancer from a single droplet of serum, in which a nanostructured photonic crystal surface is used to amplify the output of a fluorescence-linked immunosorbent assay. The platform is comprised of a microfluidic cartridge with integrated photonic crystal chips that interfaces with an assay instrument that automates the introduction of reagents, wash steps, and surface drying. Upon assay completion, the cartridge interfaces with a custom laser-scanning instrument that couples light into the photonic crystal at the optimal resonance condition for fluorescence enhancement. The instrument is used to measure the fluorescence intensity values of microarray spots corresponding to the biomarkers of interest, in addition to several experimental controls that verify correct functioning of the assay protocol. In this work, we report both dose-response characterization of the system using anti-E7 antibody introduced at known concentrations into serum and characterization of a set of clinical samples from which results were compared with a conventional enzyme-linked immunosorbent assay (ELISA) performed in microplate format. The demonstrated capability represents a simple, rapid, automated, and high-sensitivity method for multiplexed detection of protein biomarkers from a low-volume test sample.

16.
Chem Soc Rev ; 46(2): 366-388, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-27841420

RESUMO

Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.


Assuntos
Técnicas Biossensoriais , Fótons , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Nanoestruturas/química
17.
Nano Lett ; 17(12): 7569-7577, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29078049

RESUMO

Nanoantennas offer the ultimate spatial control over light by concentrating optical energy well below the diffraction limit, whereas their quality factor (Q) is constrained by large radiative and dissipative losses. Dielectric microcavities, on the other hand, are capable of generating a high Q-factor through an extended photon storage time but have a diffraction-limited optical mode volume. Here we bridge the two worlds, by studying an exemplary hybrid system integrating plasmonic gold nanorods acting as nanoantennas with an on-resonance dielectric photonic crystal (PC) slab acting as a low-loss microcavity and, more importantly, by synergistically combining their advantages to produce a much stronger local field enhancement than that of the separate entities. To achieve this synergy between the two polar opposite types of nanophotonic resonant elements, we show that it is crucial to coordinate both the dissipative loss of the nanoantenna and the Q-factor of the low-loss cavity. In comparison to the antenna-cavity coupling approach using a Fabry-Perot resonator, which has proved successful for resonant amplification of the antenna's local field intensity, we theoretically and experimentally show that coupling to a modest-Q PC guided resonance can produce a greater amplification by at least an order of magnitude. The synergistic nanoantenna-microcavity hybrid strategy opens new opportunities for further enhancing nanoscale light-matter interactions to benefit numerous areas such as nonlinear optics, nanolasers, plasmonic hot carrier technology, and surface-enhanced Raman and infrared absorption spectroscopies.

18.
Anal Chem ; 89(21): 11219-11226, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28819973

RESUMO

New tools are needed to enable rapid detection, identification, and reporting of infectious viral and microbial pathogens in a wide variety of point-of-care applications that impact human and animal health. We report the design, construction, and characterization of a platform for multiplexed analysis of disease-specific DNA sequences that utilizes a smartphone camera as the sensor in conjunction with a hand-held "cradle" that interfaces the phone with a silicon-based microfluidic chip embedded within a credit-card-sized cartridge. Utilizing specific nucleic acid sequences for four equine respiratory pathogens as representative examples, we demonstrated the ability of the system to utilize a single 15 µL droplet of test sample to perform selective positive/negative determination of target sequences, including integrated experimental controls, in approximately 30 min. Our approach utilizes loop-mediated isothermal amplification (LAMP) reagents predeposited into distinct lanes of the microfluidic chip, which when exposed to target nucleic acid sequences from the test sample, generates fluorescent products that when excited by appropriately selected light emitting diodes (LEDs), are visualized and automatically analyzed by a software application running on the smartphone microprocessor. The system achieves detection limits comparable to those obtained by laboratory-based methods and instruments. Assay information is combined with the information from the cartridge and the patient to populate a cloud-based database for epidemiological reporting of test results.


Assuntos
DNA Bacteriano/análise , DNA Viral/análise , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Smartphone , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 4/genética , Dispositivos Lab-On-A-Chip , Limite de Detecção , Pneumopatias/diagnóstico , Pneumopatias/veterinária , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Streptococcus equi/genética
19.
Opt Express ; 25(21): 25831-25841, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041246

RESUMO

Quantum dots (QDs) integration into photonic devices requires varied approaches to control and modulate their emission. We demonstrate voltage-tunable PC structures with integrated QDs over suspended piezoelectric aluminum nitride thin film resonators that modulate PC enhancement at MHz frequencies. When the piezoelectric device is actuated at its resonant mechanical frequency, the extracted QD emission direction is likewise modulated via the optical resonant frequency of the PC. Modulation uses nanometer-scale mechanical displacements, offering the potential for greater switching speed and improved mechanical robustness that is not subject to the effects of stiction with a scalable fabrication approach.

20.
Sensors (Basel) ; 17(10)2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946680

RESUMO

The total analytical error of a photonic crystal (PC) biosensor in the determination of ferritin and soluble transferrin receptor (sTfR) as biomarkers of iron deficiency anemia in chronic kidney disease (CKD) patients was evaluated against certified ELISAs. Antigens were extracted from sera of CKD patients using functionalized iron-oxide nanoparticles (fAb-IONs) followed by magnetic separation. Immuno-complexes were recognized by complementary detection Ab affixed to the PC biosensor surface, and their signals were followed using the BIND instrument. Quantification was conducted against actual protein standards. Total calculated error (TEcalc) was estimated based on systematic (SE) and random error (RE) and compared against total allowed error (TEa) based on established quality specifications. Both detection platforms showed adequate linearity, specificity, and sensitivity for biomarkers. Means, SD, and CV were similar between biomarkers for both detection platforms. Compared to ELISA, inherent imprecision was higher on the PC biosensor for ferritin, but not for sTfR. High SE or RE in the PC biosensor when measuring either biomarker resulted in TEcalc higher than the TEa. This did not influence the diagnostic ability of the PC biosensor to discriminate CKD patients with low iron stores. The performance of the PC biosensor is similar to certified ELISAs; however, optimization is required to reduce TEcalc.


Assuntos
Anemia Ferropriva/diagnóstico , Anemia Ferropriva/etiologia , Técnicas Biossensoriais/normas , Análise Química do Sangue/métodos , Óptica e Fotônica/normas , Insuficiência Renal Crônica/complicações , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA