Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Exp Bot ; 73(5): 1301-1311, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939088

RESUMO

The light attenuation process within a plant canopy defines energy capture and vertical distribution of light and nitrogen (N). The vertical light distribution can be quantitatively described with the extinction coefficient (k), which associates the fraction of intercepted photosynthetically active radiation (fPARi) with the leaf area index (LAI). Lower values of k correspond to upright leaves and homogeneous vertical light distribution, increasing radiation use efficiency (RUE). Yield gains in maize (Zea mays L.) were accompanied by increases in optimum plant density and leaf erectness. Thus, the yield-driven breeding programs and management changes, such as reduced row spacing, selected a more erect leaf habit under different maize production systems (e.g., China and the USA). In this study, data from Argentina revealed that k decreased at a rate of 1.1% year-1 since 1989, regardless of plant density and in agreement with Chinese reports (1.0% year-1 since 1981). A reliable assessment of changes in k over time is critical for predicting (i) modifications in resource use efficiency (e.g. radiation, water, and N), improving estimations derived from crop simulation models; (ii) differences in productivity caused by management practices; and (iii) limitations to further exploit this trait with breeding.


Assuntos
Fotossíntese , Melhoramento Vegetal , Zea mays , Folhas de Planta , Luz Solar , Zea mays/efeitos da radiação
2.
J Exp Bot ; 72(10): 3902-3913, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33744949

RESUMO

Identifying the physiological traits indirectly selected during the search for high-yielding maize hybrids is useful for guiding further improvements. To investigate such traits, in this study we focused on the critical period of kernel formation because kernel number is the main yield component affected by breeding. Our results show that breeding has increased the number of florets per ear and ear growth rate but not the vegetative shoot growth rate, suggesting localised effects around the ear. Consistent with this possibility, breeding has increased the net CO2 exchange of the ear leaf in field-grown crops grown at high population densities. This response is largely accounted for by increased light interception (which increases photosynthesis) and by reduced rates of respiration of the ear leaf in modern hybrids compared to older ones. Modern hybrids show increased ear-leaf area per unit leaf dry matter (specific leaf area), which accounts for the reduced respiratory load per unit leaf area. These observations are consistent with a model where the improved ear leaf CO2 exchange helps the additional florets produced by modern hybrids to survive the critical period of high susceptibility to stress and hence to produce kernels.


Assuntos
Dióxido de Carbono , Zea mays , Fotossíntese , Melhoramento Vegetal , Folhas de Planta , Zea mays/genética
3.
J Exp Bot ; 70(5): 1669-1681, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30726944

RESUMO

HaHB4 is a sunflower transcription factor belonging to the homeodomain-leucine zipper I family whose ectopic expression in Arabidopsis triggers drought tolerance. The use of PCR to clone the HaHB4 coding sequence for wheat transformation caused unprogrammed mutations producing subtle differences in its activation ability in yeast. Transgenic wheat plants carrying a mutated version of HaHB4 were tested in 37 field experiments. A selected transgenic line yielded 6% more (P<0.001) and had 9.4% larger water use efficiency (P<0.02) than its control across the evaluated environments. Differences in grain yield between cultivars were explained by the 8% improvement in grain number per square meter (P<0.0001), and were more pronounced in stress (16% benefit) than in non-stress conditions (3% benefit), reaching a maximum of 97% in one of the driest environments. Increased grain number per square meter of transgenic plants was accompanied by positive trends in spikelet numbers per spike, tillers per plant, and fertile florets per plant. The gene transcripts associated with abiotic stress showed that HaHB4's action was not dependent on the response triggered either by RD19 or by DREB1a, traditional candidates related to water deficit responses. HaHB4 enabled wheat to show some of the benefits of a species highly adapted to water scarcity, especially in marginal regions characterized by frequent droughts.


Assuntos
Helianthus/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA