Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 293(39): 15208-15220, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115681

RESUMO

Interleukin-1 receptor (IL1R)-associated kinase 4 (IRAK4) is a central regulator of innate immune signaling, controlling IL1R and Toll-like receptor (TLR)-mediated responses and containing both scaffolding and kinase activities. Humans deficient in IRAK4 activity have autosomal recessive primary immune deficiency (PID). Here, we characterized the molecular mechanism of dysfunction of two IRAK4 PID variants, G298D and the compound variant R12C (R12C/R391H/T458I). Using these variants and the kinase-inactive D329A variant to delineate the contributions of IRAK4's scaffolding and kinase activities to IL1R signaling, we found that the G298D variant is kinase-inactive and expressed at extremely low levels, acting functionally as a null mutation. The R12C compound variant possessed WT kinase activity, but could not interact with myeloid differentiation primary response 88 (MyD88) and IRAK1, causing impairment of IL-1-induced signaling and cytokine production. Quantitation of IL-1 signaling in IRAK4-deficient cells complemented with either WT or the R12C or D329A variant indicated that the loss of MyD88 interaction had a greater impact on IL-1-induced signaling and cytokine expression than the loss of IRAK4 kinase activity. Importantly, kinase-inactive IRAK4 exhibited a greater association with MyD88 and a weaker association with IRAK1 in IRAK4-deficient cells expressing kinase-inactive IRAK4 and in primary cells treated with a selective IRAK4 inhibitor. Loss of IRAK4 kinase activity only partially inhibited IL-1-induced cytokine and NF-κB signaling. Therefore, the IRAK4-MyD88 scaffolding function is essential for IL-1 signaling, but IRAK4 kinase activity can control IL-1 signal strength by modulating the association of IRAK4, MyD88, and IRAK1.


Assuntos
Síndromes de Imunodeficiência/genética , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/genética , Interleucina-1/genética , Fator 88 de Diferenciação Mieloide/genética , Linhagem Celular , Cristalografia por Raios X , Humanos , Imunidade Inata/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/deficiência , Mutação , Fator 88 de Diferenciação Mieloide/química , NF-kappa B/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Transdução de Sinais
2.
J Biol Chem ; 292(45): 18689-18698, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28924041

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate immune signaling by Toll-like receptors (TLRs), and loss of IRAK4 activity in mice and humans increases susceptibility to bacterial infections and causes defects in TLR and IL1 ligand sensing. However, the mechanism by which IRAK4 activity regulates the production of downstream inflammatory cytokines is unclear. Using transcriptomic and biochemical analyses of human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the activation of interferon regulatory factor 5 (IRF5), a transcription factor implicated in the pathogenesis of multiple autoimmune diseases. Following TLR7/8 stimulation by its agonist R848, chemical inhibition of IRAK4 abolished IRF5 translocation to the nucleus and thus prevented IRF5 binding to and activation of the promoters of inflammatory cytokines in human monocytes. We also found that IKKß, an upstream IRF5 activator, is phosphorylated in response to the agonist-induced TLR signaling. Of note, IRAK4 inhibition blocked IKKß phosphorylation but did not block the nuclear translocation of NFκB, which was surprising, given the canonical role of IKKß in phosphorylating IκB to allow NFκB activation. Moreover, pharmacological inhibition of either IKKß or the serine/threonine protein kinase TAK1 in monocytes blocked TLR-induced cytokine production and IRF5 translocation to the nucleus, but not nuclear translocation of NFκB. Taken together, our data suggest a mechanism by which IRAK4 activity regulates TAK1 and IKKß activation, leading to the nuclear translocation of IRF5 and induction of inflammatory cytokines in human monocytes.


Assuntos
Quinase I-kappa B/metabolismo , Fatores Reguladores de Interferon/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Modelos Imunológicos , Monócitos/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Células Cultivadas , Biologia Computacional , Citocinas/agonistas , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/química , Fatores Reguladores de Interferon/agonistas , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Análise de Célula Única , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo
3.
J Immunol ; 197(6): 2421-33, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521339

RESUMO

A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1ß and pro-IL-18, as well as the subsequent release of biologically active IL-1ß, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1ß processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1ß, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1ß release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease.


Assuntos
Dermatite/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inflamassomos/antagonistas & inibidores , Inflamação/fisiopatologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Sulfonas/farmacologia , Animais , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Dermatite/imunologia , Dermatite/fisiopatologia , Modelos Animais de Doenças , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Imunidade Inata/efeitos dos fármacos , Indenos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-18/antagonistas & inibidores , Interleucina-18/metabolismo , Interleucina-1alfa/antagonistas & inibidores , Interleucina-1alfa/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Camundongos , Pneumonia/fisiopatologia , Transdução de Sinais , Sulfonamidas , Sulfonas/administração & dosagem , Sulfonas/uso terapêutico
4.
PLoS Genet ; 11(5): e1005238, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020233

RESUMO

Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.


Assuntos
Diferenciação Celular/genética , Hipertensão Pulmonar/genética , MicroRNAs/genética , Artéria Pulmonar/metabolismo , Animais , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/crescimento & desenvolvimento , Artéria Pulmonar/patologia , Proteínas Ligases SKP Culina F-Box/biossíntese , Proteínas Ligases SKP Culina F-Box/genética
5.
Am J Respir Cell Mol Biol ; 52(4): 397-408, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25211015

RESUMO

Decades of studies have shown evolutionarily conserved molecular networks consisting of transcriptional factors, diffusing growth factors, and signaling pathways that regulate proper lung development. Recently, microRNAs (miRNAs), small, noncoding regulatory RNAs, have been integrated into these networks. Significant advances have been made in characterizing the developmental stage- or cell type-specific miRNAs during lung development by using approaches such as genome-wide profiling and in situ hybridization. Results from gain- or loss-of-function studies revealed pivotal roles of protein components of the miRNA pathway and individual miRNAs in regulating proliferation, apoptosis, differentiation, and morphogenesis during lung development. Aberrant expression or functions of these components have been associated with pulmonary disorders, suggesting their involvement in pathogenesis of these diseases. Moreover, genetically modified mice generated in these studies have become useful models of human lung diseases. Challenges in this field include characterization of collective function and responsible targets of miRNAs specifically expressed during lung development, and translation of these basic findings into clinically relevant information for better understanding of human diseases. The goal of this review is to discuss the recent progress on the understanding of how the miRNA pathway regulates lung development, how dysregulation of miRNA activities contributes to pathogenesis of related pulmonary diseases, and to identify relevant questions and future directions.


Assuntos
Pneumopatias/metabolismo , MicroRNAs/fisiologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Pulmão/irrigação sanguínea , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/fisiologia , Interferência de RNA , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
6.
J Biol Chem ; 289(15): 10865-10875, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567333

RESUMO

IRAK4 is a central kinase in innate immunity, but the role of its kinase activity is controversial. The mechanism of activation for IRAK4 is currently unknown, and little is known about the role of IRAK4 kinase in cytokine production, particularly in different human cell types. We show IRAK4 autophosphorylation occurs by an intermolecular reaction and that autophosphorylation is required for full catalytic activity of the kinase. Phosphorylation of any two of the residues Thr-342, Thr-345, and Ser-346 is required for full activity, and the death domain regulates the activation of IRAK4. Using antibodies against activated IRAK4, we demonstrate that IRAK4 becomes phosphorylated in human cells following stimulation by IL-1R and Toll-like receptor agonists, which can be blocked pharmacologically by a dual inhibitor of IRAK4 and IRAK1. Interestingly, in dermal fibroblasts, although complete inhibition of IRAK4 kinase activity does not inhibit IL-1-induced IL-6 production, NF-κB, or MAPK activation, there is complete ablation of these processes in IRAK4-deficient cells. In contrast, the inhibition of IRAK kinase activity in primary human monocytes reduces R848-induced IL-6 production with minimal effect on NF-κB or MAPK activation. Taken together, these studies define the mechanism of IRAK4 activation and highlight the differential role of IRAK4 kinase activity in different human cell types as well as the distinct roles IRAK4 scaffolding and kinase functions play.


Assuntos
Regulação Enzimológica da Expressão Gênica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Sistema Livre de Células , Clonagem Molecular , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Insetos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , Monócitos/citologia , Mutação , NF-kappa B/metabolismo , Fases de Leitura Aberta , Fosforilação , Ligação Proteica , Conformação Proteica , Receptores de Interleucina-1/agonistas , Transdução de Sinais , Pele/metabolismo , Receptores Toll-Like/agonistas
7.
Biochem Cell Biol ; 93(2): 109-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25454218

RESUMO

Pulmonary fibrosis is a pathological condition in which lungs become scarred due to the excess extracellular matrix (ECM) deposition and structural alterations in the interstitium of lung parenchyma. Many patients with interstitial lung diseases (ILDs) caused by long-term exposure to toxic substances, chronic infections, or autoimmune responses develop fibrosis. Etiologies for many ILDs are unknown, such as idiopathic pulmonary fibrosis (IPF), a devastating, relentless form of pulmonary fibrosis with a median survival of 2-3 years. Despite several decades of research, factors that initiate and sustain the fibrotic response in lungs remain unclear and there is no effective treatment to block progression of fibrosis. Here we summarize recent findings on the antifibrotic activity of miR-29, a small noncoding regulatory RNA, in the pathogenesis of fibrosis by regulating ECM production and deposition, and epithelial-mesenchymal transition (EMT). We also describe interactions of miR-29 with multiple profibrotic and inflammatory pathways. Finally, we review the antifibrotic activity of miR-29 in animal models of fibrosis and highlight miR-29 as a promising therapeutic reagent or target for the treatment of pulmonary fibrosis.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , MicroRNAs/metabolismo , Animais , Colágeno/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos
8.
Am J Respir Cell Mol Biol ; 51(2): 273-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24617895

RESUMO

Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin ß1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling.


Assuntos
Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Arrestinas/genética , Arrestinas/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas Hedgehog/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fatores de Transcrição Kruppel-Like/genética , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Camundongos , MicroRNAs/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor Smoothened , Transfecção , Alcaloides de Veratrum/farmacologia , Proteína Gli2 com Dedos de Zinco , beta-Arrestinas
9.
Am J Physiol Lung Cell Mol Physiol ; 306(5): L405-19, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24375798

RESUMO

Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibrose Pulmonar Idiopática/fisiopatologia , Mucosa Respiratória/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Mesoderma/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Gravidez , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética
10.
Am J Respir Cell Mol Biol ; 45(2): 287-94, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20971881

RESUMO

MicroRNAs (miRNA) are small regulatory RNAs that control gene expression by translational suppression and destabilization of target mRNAs. There is increasing evidence that miRNAs regulate genes associated with fibrosis in organs, such as the heart, kidney, liver, and the lung. In a large-scale screening for miRNAs potentially involved in bleomycin-induced fibrosis, we found expression of miR-29 family members significantly reduced in fibrotic lungs. Analysis of normal lungs showed the presence of miR-29 in subsets of interstitial cells of the alveolar wall, pleura, and at the entrance of the alveolar duct, known sites of pulmonary fibrosis. miR-29 levels inversely correlated with the expression levels of profibrotic target genes and the severity of the fibrosis. To study the impact of miR-29 down-regulation in the lung interstitium, we characterized gene expression profiles of human fetal lung fibroblast IMR-90 cells in which endogenous miR-29 was knocked down. This confirmed the derepression of reported miR-29 targets, including several collagens, but also revealed up-regulation of a large number of previously unrecognized extracellular matrix-associated and remodeling genes. Moreover, we found that miR-29 is suppressed by transforming growth factor (TGF)-ß1 in these cells, and that many fibrosis-associated genes up-regulated by TGF-ß1 are derepressed by miR-29 knockdown. Interestingly, a comparison of TGF-ß1 and miR-29 targets revealed that miR-29 controls an additional subset of fibrosis-related genes, including laminins and integrins, independent of TGF-ß1. Together, these strongly suggest a role of miR-29 in the pathogenesis of pulmonary fibrosis. miR-29 may be a potential new therapeutic target for this disease.


Assuntos
Biomarcadores/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , Fibrose Pulmonar/genética , Fator de Crescimento Transformador beta1/farmacologia , Regiões 3' não Traduzidas , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Northern Blotting , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Luciferases/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA