Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 109(3): 508-522, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743401

RESUMO

Soil is a living ecosystem, the health of which depends on fine interactions among its abiotic and biotic components. These form a delicate equilibrium maintained through a multilayer network that absorbs certain perturbations and guarantees soil functioning. Deciphering the principles governing the interactions within soils is of critical importance for their management and conservation. Here, we focus on soil microbiota and discuss the complexity of interactions that impact the composition and function of soil microbiota and their interaction with plants. We discuss how physical aspects of soils influence microbiota composition and how microbiota-plant interactions support plant growth and responses to nutrient deficiencies. We predict that understanding the principles determining the configuration and functioning of soil microbiota will contribute to the design of microbiota-based strategies to preserve natural resources and develop more environmentally friendly agricultural practices.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota , Plantas/microbiologia , Microbiologia do Solo , Rizosfera
2.
Appl Environ Microbiol ; 80(1): 86-96, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123748

RESUMO

Typical plant aspartic protease zymogens comprise a characteristic and plant-specific insert (PSI). PSI domains can interact with membranes, and a role as a defensive weapon against pathogens has been proposed. However, the potential of PSIs as antimicrobial agents has not been fully investigated and explored yet due to problems in producing sufficient amounts of these domains in bacteria. Here, we report the development of an expression platform for the production of the PSI domain of cirsin in the generally regarded as safe (GRAS) yeast Kluyveromyces lactis. We successfully generated K. lactis transformants expressing and secreting significant amounts of correctly processed and glycosylated PSI, as well as its nonglycosylated mutant. A purification protocol with protein yields of ∼4.0 mg/liter was established for both wild-type and nonglycosylated PSIs, which represents the highest reported yield for a nontagged PSI domain. Subsequent bioactivity assays targeting phytopathogenic fungi indicated that the PSI of cirsin is produced in a biologically active form in K. lactis and provided clear evidence for its antifungal activity. This yeast expression system thereby emerges as a promising production platform for further exploring the biotechnological potential of these plant saposin-like proteins.


Assuntos
Ácido Aspártico Proteases/metabolismo , Kluyveromyces/metabolismo , Saposinas/metabolismo , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/isolamento & purificação , Expressão Gênica , Kluyveromyces/genética , Testes de Sensibilidade Microbiana , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saposinas/genética , Saposinas/isolamento & purificação , Transformação Genética
3.
Curr Biol ; 32(2): 488-495.e5, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34919806

RESUMO

Soil availability of inorganic ortho-phosphate (PO43-, Pi) is a key determinant of plant growth and fitness.1 Plants regulate the capacity of their roots to take up inorganic phosphate by adapting the abundance of H+-coupled phosphate transporters of the PHOSPHATE TRANSPORTER 1 (PHT1) family2 at the plasma membrane (PM) through transcriptional and post-translational changes driven by the genetic network of the phosphate starvation response (PSR).3-8 Increasing evidence also shows that plants integrate immune responses to alleviate phosphate starvation stress through the association with beneficial microbes.9-11 Whether and how such phosphate transport is regulated upon activation of immune responses is yet uncharacterized. To address this question, we first developed quantitative assays based on changes in the electrical PM potential to measure active Pi transport in roots in real time. By inserting micro-electrodes into bulging root hairs, we were able to determine key characteristics of phosphate transport in intact Arabidopsis thaliana (hereafter Arabidopsis) seedlings. The fast Pi-induced depolarization observed was dependent on the activity of the major phosphate transporter PHT1;4. Notably, we observed that this PHT1;4-mediated phosphate uptake is repressed upon activation of pattern-triggered immunity. This inhibition depended on the receptor-like cytoplasmic kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and PBS1-LIKE KINASE 1 (PBL1), which both phosphorylated PHT1;4. As a corollary to this negative regulation of phosphate transport by immune signaling, we found that PHT1;4-mediated phosphate uptake normally negatively regulates anti-bacterial immunity in roots. Collectively, our results reveal a mechanism linking plant immunity and phosphate homeostasis, with BIK1/PBL1 providing a molecular integration point between these two important pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo
4.
Science ; 371(6525)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214288

RESUMO

Plant roots and animal guts have evolved specialized cell layers to control mineral nutrient homeostasis. These layers must tolerate the resident microbiota while keeping homeostatic integrity. Whether and how the root diffusion barriers in the endodermis, which are critical for the mineral nutrient balance of plants, coordinate with the microbiota is unknown. We demonstrate that genes controlling endodermal function in the model plant Arabidopsis thaliana contribute to the plant microbiome assembly. We characterized a regulatory mechanism of endodermal differentiation driven by the microbiota with profound effects on nutrient homeostasis. Furthermore, we demonstrate that this mechanism is linked to the microbiota's capacity to repress responses to the phytohormone abscisic acid in the root. Our findings establish the endodermis as a regulatory hub coordinating microbiota assembly and homeostatic mechanisms.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Microbiota/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Arabidopsis/genética , Difusão , Regulação da Expressão Gênica de Plantas , Homeostase , Lipídeos/biossíntese , Raízes de Plantas/genética , Estresse Fisiológico
5.
Front Microbiol ; 9: 3047, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619138

RESUMO

Grapevine trunk diseases (GTDs) are one of the major concern amongst grapevine diseases, responsible for the decline of vineyards and for several economical losses. Since grapevine is naturally colonized by resident microorganisms such as Aureobasidium pullulans, the present challenge is to understand their biocontrol potential and how such microorganisms can be successfully integrated in the control of GTDs. In this context, the first priority consists to exploit the plant-beneficial-phytopathogen interactions in plant model systems, to identify the most prevalent equilibrium limiting expression of GTDs. In the current study, we deep characterized the interaction of a resident and abundant microorganism from grapevine - Aureobasidium pullulans strain Fito_F278 - against D. seriata F98.1, a Botryosphaeria dieback agent, and with plant (cv Chardonnay). Results revealed that A. pullulans strain Fito_F278 was able to reduce significantly the mycelium growth of D. seriata F98.1 at 33.41 ± 0.55%, under in vitro conditions, though this reduction is possibly dependent on a direct interaction between strain Fito_F278 and pathogen. Furthermore, strain Fito_F278 was able to promote an induction of some plant defense responses in cutting plants, 1 week after the D. seriata F98.1 infection. Results evidenced that strain Fito_F278 colonized efficiently grapevine at both epiphyte and endophyte level, could persist on plant roots for long-periods (up to 2 months after its inoculation) and grow at different pH and high salinity conditions. Moreover, a significant decrease of the microbial load from soil and rhizosphere was observed in plants treated with the strain Fito_F278, suggesting its competitivity potential in a microbial ecosystem. Altogether, the present study gives the first insights about the interaction of A. pullulans strain Fito_F278, a resident microorganism, with grapevine, its potential role against a Botryosphaeria dieback agent, and highlights its importance to toward more resilient grapevine.

6.
Front Microbiol ; 6: 905, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388852

RESUMO

Grapes and wine musts harbor a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation - Initial Musts (IM), and Start and End of alcoholic fermentations (SF and EF, respectively). The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p < 0.05) were found in the fungal populations between IM, SF, and EF, and in the bacterial population between IM and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the IM, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida, and Schizosaccharomyces). Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae) and acetic acid (Acetobacteriaceae) were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of regional wines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA