Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171750, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494019

RESUMO

Precipitation plays a crucial role in the natural hydrological cycle. Understanding the spatial and temporal variations of precipitation isotopes is essential for identifying hydrological, meteorological, and ecological processes. In high mountain areas with arid and semi-arid conditions, especially in regions with endorheic basins, the portion of precipitation that infiltrates the groundwater as the primary source of water recharge. However, estimating this recharge is challenging and prone to high uncertainty. The main objective of this study was to implement a robust and detailed methodology to analyze the influence of meteorological variables and the origin of moisture sources on the stable isotopic composition (δ18O and δ2H) of precipitation. As an illustrative case, we focused on the Los Pozuelos Basin, an endorheic basin in the Altiplano-Puna region of the Andes. The analysis incorporated precipitation samples collected over a 3-year period (January 2020 to April 2023) along with comprehensive monitoring of local atmospheric variables, satellite imagery, and HYSPLIT backward trajectory models. The examination involved a multivariate analysis of meteorological and stable isotope data and atmospheric transport pattern. Precipitation characteristics exhibited seasonal variability, with summer precipitation being depleted in heavy isotopes due to its extended continental journey and the recycling it undergoes while crossing the Amazon basin with convective activity. Another moisture path from the Atlantic Ocean, via the Río de la Plata or Gran Chaco basin, represented an intermediate isotopic stage. La Niña events intensified westerly winds, drawing moist air masses from the Pacific Ocean and causing rainfall in the study area. In winter, precipitation comes from the Pacific Ocean and isotopically enriched due to the low amount of precipitation and lower convective activity. By employing a meticulous methodology and multivariate statistical analysis, the study contributes positively to the broader discourse on water resource management and conservation in arid and semi-arid environments.

2.
Sci Total Environ ; 895: 165055, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348727

RESUMO

A hydrogeochemical and isotopic study has been carried out to understand the hydrogeological functioning of a small alluvial aquifer in central Chile in a context of mega-drought and intensive exploitation of its waters. Additionally, two mine tailings dams from porphyry copper mining are situated in the area. The prolonged mega-drought, which has lasted for over thirteen years, has resulted in a significant decrease in rainfall recharge and a drop of up to 50 m in piezometric levels, although no serious groundwater contamination problems have yet been detected, except for a rise in nitrate contents (ranging between 23 and 45 mg/L NO3) attributed to return irrigation. Groundwaters are calcium-bicarbonate and calcium-sodium-bicarbonate in composition. The values of δ18O and δ2H of the alluvial aquifer indicate fractionation by evaporation that would be explained by the recirculation of water that occurs in the agricultural areas of the basin, where the excess irrigation water that go back to the aquifer presents fractionation by evaporation. The δ34S and δ18O of dissolved sulfate point to pyrite oxidation, which could be related to the pyrite present in the copper porphyry and recognized in the Andes Cordillera. The 87Sr/86Sr isotopic values of the alluvial aquifer waters are close to the isotopic fingerprint of the volcanic rocks of the Abanico Formation. However, the water from the wells located further downstream in the basin and close to the tailing dams show δ34S and δ18O of dissolved sulfate and 87Sr/86Sr consistent with Miocene intrusive mineralogies of the copper porphyry type. The groundwater chemistry does not show water seepage from the tailings dam. Therefore, a minor contribution of minerals related to the intrusive rocks is proposed, which would originate from the movement of fine particles by the wind from the dams to the valley floor. The 14C activities indicate that groundwater is recent.

3.
Sci Total Environ ; 806(Pt 1): 150271, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560455

RESUMO

To reduce uncertainty in the identification of the recharge areas in the Peripheral Aquifer of the Salar de Atacama (SdA), a few studies have investigated the isotopic characteristics and moisture sources of precipitation in the SdA basin. In the present study, the seasonal cycle of meteorological parameters and the relationships of this cycle with sea surface temperature anomalies are shown, the sources of humidity are identified, and the types of clouds producing precipitation are defined. Finally, the isotopic compositions of precipitation, surface water and groundwater in the SdA basin and the Altiplano-Puna Plateau basins are analysed to identify the area recharging the northern, eastern and southern subbasins of the SdA. In summer, when the highest temperature, relative humidity and precipitation values of the year are recorded, the precipitation is due to deep convection. The trajectories of the arriving air masses can be classified into three groups: from the North Atlantic Ocean across the Amazon basin, from the South Atlantic Ocean across the La Plata River basin and the Gran Chaco, and from the Pacific Ocean. In winter, when the temperature, relative humidity and precipitation are lower, the moisture masses come from the Pacific Ocean. Winter precipitation is more depleted in heavy isotopes than summer precipitation. The isotopic analysis of precipitation, surface water and groundwater shows that recharge of the eastern subbasins of the SdA occurs by diffuse infiltration of precipitation and concentrated infiltration of surface water, both within the hydrographic basin of the SdA. The meteoric source of the waters in the Altiplano-Puna Plateau basins is isotopically lighter than the waters found in the side basins of the SdA, so there is no significant water quantity transfer to the peripheral aquifers of the SdA from outside the hydrographic basin.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Isótopos/análise , Rios , Estações do Ano
4.
Sci Total Environ ; 805: 149742, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818781

RESUMO

In the arid area of northern Chile, groundwater resources in the Andean formations are essential for native populations, ecological services, mining, and other human activities. Validated conceptual hydrogeological models are required for current and future water and land management. This work aims to explain the processes controlling the origin and distribution of recharge and groundwater composition in the Andean Precordillera and Altiplano of the Tarapacá Region of northern Chile, using major solutes in spring, river, and well water, and the stable and radioactive isotopes of water oxygen, hydrogen, and dissolved inorganic carbon. The waters are mainly of the Na-Ca-SO4 type. Processes controlling the chemical evolution of waters are atmospheric dust contribution, evapo-concentration, and enhanced volcanic rock weathering, as well as halite dissolution in some locations. The isotopic composition of Precordillera eastern flank water samples follows an evaporation line, while those in the western flank, in the Altiplano, follow a line that is parallel to the local meteoric line, suggesting unsaturated zone evaporation processes of infiltrated rainfall. δ13CDIC contents (-2 to -27‰) indicate mixing processes, volcanic CO2 in the Altiplano, and calcite dissolution in some sectors. In the western depression, the only recharge is due to water infiltration in creek channels. In the highland areas, 5-25% of precipitation produces recharge. The estimated groundwater renewal time in the Precordillera was 3-14 kyr. The piezometric elevation in the Precordillera due to low-permeability intrusive rocks and local recharge prevents the east-west groundwater transfer from the Altiplano to the western depression and explains why the volcanic CO2 in the Altiplano basins is not observed on the western flank. These results provide new insights for the evolution of water quality in volcanic aquifers in arid environments and provide considerations for estimating groundwater residence times using radiocarbon in areas influenced by volcanic CO2.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Chile , Humanos , Rios , Qualidade da Água
5.
Sci Total Environ ; 789: 147904, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34323841

RESUMO

The Talave tunnel (TT) is an infrastructure of a major water transfer from the Tajo river basin (center Spain) to the Segura river basin (SE Spain), crossing the Júcar river basin. The tunnel was drilled between 1969 and 1978. It is 32 km long, N/NW-S/SE oriented, has a maximum depth of 320 m, intersects several aquifers, and its southern stretch follows the eastern boundary of the Alcadozo aquifer. The TT drilling perturbed groundwater flow in two river basins, and the induced groundwater inlets generated social and administrative concern lasting until today. The main objectives of this paper are understanding the historical and current tunnel-massif hydrodynamic relationships, and deciphering the origin of groundwater inflow into the tunnel. The first objective was approached analyzing the discharge flow evolution since the drilling until 2016, together with old (1970s) and recent (2014-2017) piezometric data. For the second objective, hydrochemical and isotopic data were generated between 2014 and 2018 from discrete and integrated discharge to the tunnel. Attaining both goals benefited of recent studies on groundwater recharge and functioning in the Alcadozo aquifer. Discharge flows stabilized in the early 2000s. 340 hm3 were drained between 1969 and 2016, producing a piezometric drawdown between 15 and 120 m along the tunnel. The main inflow zones correspond to tectonic fractures concentrated in the middle and southern sections of the tunnel. The existence of a hydrogeological divide between the Júcar and the Segura river basins some 3 km to the N of the watershed divide implies that all groundwater comes from the Segura hydrogeological basin. The isotopes suggest that groundwater comes mainly from regional flow lines originated to the W of the tunnel, together with some local recharge. The effects of tunneling can be used to assess the impacts of imminent groundwater development planned by the Basin Authority.

6.
Sci Total Environ ; 752: 141847, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207522

RESUMO

Groundwater recharge in hyper arid areas often depends on surface water infiltration and diffuse recharge of highly evaporated precipitation only contribute under favorable conditions. This happens in the Calama basin two-aquifer system, in the Central Andean area of northern Chile. A conceptual model of the groundwater system and its relationship with the Loa River is defined. We focus on the confined aquifer of the Calama basin, combining hydrodynamic, hydrogeochemical and isotopic methods. Radiocarbon (14C) activity data of dissolved inorganic carbon (DIC), in conjunction with chemical data, are applied to evaluate groundwater residence time within the confined aquifer. The Loa River recharges the Calama basin aquifers in its northeastern part, with water that has chemical and isotopic characteristics inherited from the arid environment and volcanic rocks in its upper basin. In the central and northeastern part of the confined aquifer, minor variations in chloride concentration suggest that the deep aquifer is well confined. The δ18O and δ2H values in groundwater of the confined aquifer show an increasing isotopic fractionation from the recharge area (around -10‰ δ18O) to those in the discharge area (between -8.5‰ and -8‰) in the southwestern part of the aquifer. The 14C activity continuously decreases down flow from the recharge by the Loa River. Adjusted DIC radiocarbon ages indicate a groundwater travel time between 1500 and 4000 years in the confined aquifer of Calama. Despite the limitations and uncertainties of radiocarbon in DIC to estimate groundwater transit times for the confined aquifer and considering complementary chemical and isotopic constraints, the DIC 14C provides acceptable values. The approach may be applicable in other confined aquifers in hyper-arid climates in which the formation of aquifer systems linked to river damming by geological action took place. This information is needed for sound management of the scarce groundwater resources.

7.
Sci Total Environ ; 690: 329-351, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299568

RESUMO

The major ion and the multi-isotopic composition (87Sr/86Sr, δ11B, δ34S(SO4) and δ18O(SO4)) of groundwater from the Central Depression in northern Chile is investigated to identify the origin of groundwater solutes in the hyper-arid core of the Atacama Desert. The study area is between the Cordillera de Domeyko and the Central Depression, at latitudes 24-25°S, and is characterized by near-zero air moisture conditions, rare precipitation and very limited runoff. Groundwater composition varies from Ca-HCO3 to Ca, Na-SO4 type below elevations of 3400 m a.s.l. The rCl/rBr ratio of meteoric waters and groundwater overlap, but significantly increase in the aquifer as salinity goes up due to evapoconcentration far from the Domeyko Cordillera. The wind-displaced dust originating in the Central Depression (87Sr/86Sr: 0.706558-0.710645; δ34S(SO4): 0 to +4‰) affects the precipitation composition in the highest parts of the Domeyko Cordillera (87Sr/86Sr: 0.706746-0.709511; δ34S(SO4): +1 to +6‰), whose δ34S(SO4) and δ11B values are greatly different from marine aerosols, discarding its contribution to dust at this distance inland. Sr and S isotopic values in groundwater indicate a strong relation with three main geological units: i) Paleozoic rocks contribute high radiogenic strontium isotope ratios to groundwater (0.707011-0.714862), while sulphate isotopic composition is probably acquired from atmospheric dust (>- 1.4‰), ii) Jurassic marine limestones contribute low-radiogenic strontium isotopic ratios to groundwater (<0.70784), while sulphate can be related to oxidized sulphides that change the isotopic signatures of sulphur (<-1.2‰), and iii) mixed salts in the Atacama Gravels contribute lower radiogenic strontium isotopic ratios and sulphate to groundwater (87Sr/86Sr: <0.707324; δ34S(SO4): +0.1 to +7.7). These three processes reflect water-rock interactions. The δ11B of groundwater generally up to +13‰, does not increase along the regional groundwater flow path, discarding fractionation by interaction with clays. These results improve the understanding of the groundwater evolution in hyper-arid systems through a new conceptual model.

8.
Sci Total Environ ; 697: 134116, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380610

RESUMO

Estimating groundwater recharge in arid regions with seasonal snow cover, as in the Andean Altiplano of northern Chile, is important for sustainable development policies and the effective management of scarce resources in a high water demanding zone, as fragile ecosystems depends on a stable water contribution. This research aims to evaluate and quantify rainfall and snowfall contribution to aquifer recharge while assessing the factors that control the hydrodynamics in such areas, based in the knowledge of the better documented Tuyajto Lake in the Tuyajto catchment/basin. The modeling framework involves an energy balance of the snow cover, a soil water balance and a groundwater flow and chloride transport model. The basin average annual recharge is about 23% of average precipitation. Snowmelt contribution to recharge is important at altitudes above 4700 m a.s.l. during September, while rainfall is more important in February and March, during short intense precipitation events. The hydraulic conductivity of ignimbrites and other volcanic formations are the most important hydrogeological parameters controlling lake level and spring flow rates, while albedo and snowpack surface roughness length on the energy balance causes the greatest variation of lake level. Evaporation is the process controlling the variability of the lake level, as aquifer contribution remains relatively constant and springs flow variability is not enough to cause the observed variations, except during November. Possible buried salts deposits on the eastern edges of Pampa Colorada and Tuyajto Lake, together with volcanic HCl contribution, justify the high measured groundwater chloride concentrations. A recharge 2-3 higher than the current one is necessary to justify a lake level 40 m above its modern value during the Last Glacial period, giving insight into past hydrological changes in the basin due to climate variability. The knowledge gained can be applied to other high altitude volcanic basins with seasonal snow cover.

9.
Sci Total Environ ; 661: 575-597, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30682610

RESUMO

In 2016-17 much of East Africa was affected by a severe drought which has been attributed to Indian Ocean Dipole and El Niño Southern Oscillation conditions. Extreme events such as this have immediate and knock-on effects on water availability for household, agricultural and industrial use. Groundwater resources can provide a buffer in times of drought, but may themselves be stressed by reduced recharge and increased usage, posing significant challenges to groundwater resource management. In the context of East Africa, groundwater management is also hampered by a lack of information on aquifer characteristics. With the aim of addressing this knowledge gap, this study shows the hydrogeological behaviour before and during La Niña 2016/17 drought in southern coastal Kenya on a groundwater system which sits within a geological structure which is representative of an important portion of the East African coast. Diverse hydrochemical and isotopic campaigns, as well as groundwater head variation measurements, were carried out to study the groundwater hydrodynamics and thus characterize the aquifer system under climatic conditions before and during the La Niña event. This information is complemented with an estimation of changes in local recharge since 2012 using local data sets. The main consequence of the drought was a 69% reduction of recharge compared to an average climatic year. There was reduced recharge during the first rainy season (April-June) and no recharge during the second wet season (October-December). There was a concurrent increase in seawater intrusion even during the wet season.

10.
Sci Total Environ ; 694: 133634, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756808

RESUMO

The industrialization process taking place in Africa has led to an overall increase in groundwater abstraction in most countries in the continent. However, the lack of hydrogeological data, as in many developing countries, makes it difficult to properly manage groundwater systems. This study presents a real case study in which a combination of different hydrogeological tools together with different sources of information allow the assessment of how increased competition for water may be affecting groundwater systems by analysing the sustainability of new abstraction regimes under different real climatic condition (before, during and after La Niña 2016). The area where this approach has been applied is Kwale County (in Coastal Kenya) in a hydrogeological context representative of an important part of the east coast of the continent, where new mining and agriculture activities co-exist with tourism and local communities. The results show that the lack of aquifer systems data can be overcome, at least partly, by integrating different sources of information. Most of the time, water-reliant users collect specific hydrogeological information that can contribute to defining the overall hydrogeological system, since their own main purpose is to exploit the aquifer with the maximum productivity. Therefore, local community water usage, together with different stakeholder's knowledge and good corporate water management act as a catalyst for providing critical data, and allows the generation of credible models for future groundwater management and resource allocation. Furthermore, complementary but simple information sources such as in situ interviews, Google Earth, Trip Advisor and easy-to use analytical methods that can be applied in the African context as in many developing countries, and enables groundwater abstraction to be estimated and the sustainability of the aquifer system to be defined, allowing potential future risks to be assessed.

11.
Sci Total Environ ; 662: 755-768, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30703733

RESUMO

Water resources management is particularly challenging in water-scarce basins, where low water availability is combined with a potential water demand exceeding the supply capacity of the natural system. This is the case of the Segura River Basin in south-eastern Spain. This paper aims at analysing the usefulness of incorporating new hydrological data and perspectives to improve the understanding of water availability and management and help promote more integrated water planning in the Segura Basin. In this basin, agriculture amounts to approximately 1366 hm3/year and accounts for 80% of the total blue water use. The forest and agriculture use of soil water amounts to 3065 and 1962 hm3/year, respectively. The unaccounted virtual water trade is also relevant and helps in mitigating water scarcity in the basin. The basin is a net virtual water-exporting region, with an average export of 1598 hm3/year, mainly in the form of fruits and vegetables, and imports approximately 1253 hm3/year, mainly related to feed for pig farms. Virtual water imports are four times larger than the disputed water transfer rate to the Segura Basin from other river basins. Water productivity analyses by sub-sectors are useful in understanding the economic rationale of the basin activities. Two types of agriculture coexist in the basin, namely, intensive industrial agriculture and occupational farming, which maintain the territory and landscape. From a Mediterranean country perspective, the analysis recommends considering climate fluctuations and temporal variability and trends of water availability and use, moving beyond the average values considered in river basin management plans. Groundwater reserve depletion continues to occur at a rate of 231 hm3/year, as water from wells is currently cheaper than using desalinated water in farms, and it does not cause boron-related water quality problems for irrigation. If socially costly administrative measures are not taken, groundwater reserve depletion will continue.

12.
Sci Total Environ ; 612: 1234-1248, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28892867

RESUMO

Land surface temperature (LST) seems to be related to the temperature of shallow aquifers and the unsaturated zone thickness (∆Zuz). That relationship is valid when the study area fulfils certain characteristics: a) there should be no downward moisture fluxes in an unsaturated zone, b) the soil composition in terms of both, the different horizon materials and their corresponding thermal and hydraulic properties, must be as homogeneous and isotropic as possible, c) flat and regular topography, and d) steady state groundwater temperature with a spatially homogeneous temperature distribution. A night time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image and temperature field measurements are used to test the validity of the relationship between LST and ∆Zuz at the Pampa del Tamarugal, which is located in the Atacama Desert (Chile) and meets the above required conditions. The results indicate that there is a relation between the land surface temperature and the unsaturated zone thickness in the study area. Moreover, the field measurements of soil temperature indicate that shallow aquifers dampen both the daily and the seasonal amplitude of the temperature oscillation generated by the local climate conditions. Despite empirically observing the relationship between the LST and ∆Zuz in the study zone, such a relationship cannot be applied to directly estimate ∆Zuz using temperatures from nighttime thermal satellite images. To this end, it is necessary to consider the soil thermal properties, the soil surface roughness and the unseen water and moisture fluxes (e.g., capillarity and evaporation) that typically occur in the subsurface.

14.
Sci Total Environ ; 624: 114-132, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29248702

RESUMO

The Cordillera de la Costa is located along the coastline of northern Chile, in the hyperarid Atacama Desert area. Chemical and isotopic analyses of several small coastal springs and groundwater reservoirs between 22.5 °S and 25.5 °S allow understanding groundwater origin, renewal time and the probable timing of recharge. The aquifers are mostly in old volcanic rocks and alluvial deposits. All spring waters are brackish, of the sodium chloride type due to intensive concentration of precipitation due aridity and for deep groundwater to additional water-rock interaction in slowly renewed groundwater and mixing with deep seated brines. The heavy δ18O and δ2H values in spring water are explained by recharge by the arrival of moist air masses from the Pacific Ocean and the originally lighter values in the deep wells can be associated to past recharge by air masses coming from the Atlantic Ocean. Current recharge is assumed almost nil but it was significant in past wetter-than-present periods, increasing groundwater reserves, which are not yet exhausted. To explain the observed chloride content and radiocarbon (14C) activity, a well-mixed (exponential) flow model has been considered for aquifer recharge. The average residence time of groundwater feeding the springs has been estimated between 1 and 2kyr, up to 5kyr and between 7 and 13kyr for deep well water, assuming that current recharge is much less than during the previous wetter period. The recharge period feeding the coastal springs could have been produced 1 to 5kyr BP, when the area was already inhabited, and recharge in the Michilla mine was produced during the 10 to 14.5kyr BP CAPE (Central Andean Pluvial Event) pluvial events of the central Andes. The approximate coincidence of turnover time with the past wet periods, as revealed by paleoclimate data, points to significant recharge during them.

15.
Sci Total Environ ; 593-594: 760-772, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364610

RESUMO

Aquifers in permeable formations developed in high-mountain watersheds slow down the transfer of snowmelt to rivers, modifying rivers' flow pattern. To gain insight into the processes that control the hydrologic response of such systems the role played by groundwater in an alpine basin located at the southeastern part of the Iberian Peninsula is investigated. As data in these environments is generally scarce and its variability is high, simple lumped parameter hydrological models that consider the groundwater component and snow accumulation and melting are needed. Instead of using existing models that use many parameters, the Témez lumped hydrological model of common use in Spain and Ibero-American countries is selected and modified to consider snow to get a simplified tool to separate hydrograph components. The result is the TDD model (Témez-Degree Day) which is applied in a high mountain watershed with seasonal snow cover in Southern Spain to help in quantifying groundwater recharge and determining the groundwater contribution to the outflow. Average groundwater recharge is about 23% of the precipitation, and groundwater contribution to total outflow ranges between 70 and 97%. Direct surface runoff is 1% of precipitation. These values depend on the existence of snow. Results are consistent with those obtained with chloride atmospheric deposition mass balances by other authors. They highlight the important role of groundwater in high mountain areas, which is enhanced by seasonal snow cover. Results compare well with other areas. This effect is often neglected in water planning, but can be easily taken into account just by extending the water balance tool in use, or any other, following the procedure that has being developed.

16.
Sci Total Environ ; 568: 415-432, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27310533

RESUMO

Groundwater recharge is one of the key variables for aquifer management and also one of the most difficult to be evaluated with acceptable accuracy. This is especially relevant in semiarid areas, where the processes involved in recharge are widely variable. Uncertainty should be estimated to know how reliable recharge estimations are. Groundwater recharge has been calculated in the Alcadozo Aquifer System, under steady state conditions, at regional (aquifer) and sub-regional (spring catchment) scales applying different methods. The regional distribution of long-term average recharge values has been estimated with the chloride mass balance method using data from four rain stations and 40 groundwater samples covering almost the whole aquifer surface. A remarkable spatial variability has been found. Average annual recharge rates ranges from 20 to 243mmyear(-1) across the aquifer, with an estimated coefficient of variation between 0.16 and 0.38. The average recharge/precipitation ratio decreases from 34% in the NW to 6% in the SE, following the topographic slope. At spring-catchment scale, recharge has been estimated by modelling the soil water balance with the code Visual Balan 2.0. The results, calibrated with discharge data of the two main springs Liétor and Ayna, are 35.5 and 50mmyear(-1) respectively, with estimated coefficients of variation of 0.49 and 0.36. A sensitivity analysis showed that soil parameters influence the most the uncertainty of recharge estimations. Recharge values estimated with both methods and at two temporal and spatial scales are consistent, considering the regional variability obtained with the chloride method and the respective confidence intervals. Evaluating the uncertainties of each method eased to compare their relative results and to check their agreement, which provided confidence to the values obtained. Thus, the use of independent methods together with their uncertainties is strongly recommended to constrain the magnitude and to provide reliance to recharge estimations.

17.
Sci Total Environ ; 557-558: 425-37, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27017075

RESUMO

Intensive exploitation and continuous consumption of groundwater reserves (groundwater mining) have been real facts for decades in arid and semiarid areas. A summary of experience in the hydrogeological, economic, social and ethical consequences of groundwater intensive and mining exploitation in Gran Canaria and Tenerife Islands, in the Canarian Archipelago, is presented. Groundwater abstraction is less than recharge, but a significant outflow of groundwater to the sea cannot be avoided, especially in Tenerife, due to its younger volcanic coastal formations. Consequently, the intensive aquifer groundwater development by means of wells and water galleries (tunnels) has produced a groundwater reserve depletion of about 2km(3). Should current groundwater abstraction cease, the recovery time to close-to-natural conditions is from decades to one century, except in the mid and high elevations of Tenerife, where this recovery is not possible as aquifer formations will remain permanently drained by the numerous long water galleries. The socio-economic circumstances are complex due to a long standing history of water resources exploitation, successive social changes on each island, and well-established groundwater water trading, with complex relationships that affect water governance and the resulting ethical concerns. Gran Canaria and Tenerife are in an advanced groundwater exploitation stage and have a large water demand. They are good examples that allow drawing guidelines to evaluate groundwater development on other small high islands. After presenting the hydrogeological background, the socio-economic results are discussed to derive general knowledge to guide on water governance.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Recursos Hídricos/provisão & distribuição , Abastecimento de Água/estatística & dados numéricos , Poços de Água , Ilhas , Mineração , Fatores Socioeconômicos , Espanha
18.
Sci Total Environ ; 573: 505-517, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27572542

RESUMO

The time series of stable water isotope composition relative to meteorological stations and springs located in the high mountainous zone of the Ordesa and Monte Perdido National Park are analyzed in order to study how the seasonal isotopic content of precipitation propagates through the hydrogeological system in terms of the aquifer recharge zone elevation and transit time. The amplitude of the seasonal isotopic composition of precipitation and the mean isotopic content in rainfall vary along a vertical transect, with altitudinal slopes for δ18O of 0.9‰/km for seasonal amplitude and -2.2‰/km for isotopic content. The main recharge zone elevation for the sampled springs is between 1950 and 2600m·a.s.l. The water transit time for the sampled springs ranges from 1.1 to 4.5yr, with an average value of 1.85yr and a standard deviation of 0.8yr. The hydrological system tends to behave as a mixing reservoir.

19.
Sci Total Environ ; 559: 302-316, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27065448

RESUMO

Intensive groundwater development is a common circumstance in semiarid and arid areas. Often abstraction exceeds recharge, thus continuously depleting reserves. There is groundwater mining when the recovery of aquifer reserves needs more than 50years. The MASE project has been carried out to compile what is known about Spain and specifically about the south-eastern Iberian Peninsula and the Canary Islands. The objective was the synthetic analysis of available data on the hydrological, economic, managerial, social, and ethical aspects of groundwater mining. Since the mid-20th century, intensive use of groundwater in south-eastern Spain allowed extending and securing the areas with traditional surface water irrigation of cash crops and their extension to former dry lands, taking advantage of good soils and climate. This fostered a huge economic and social development. Intensive agriculture is a main activity, although tourism plays currently an increasing economic role in the coasts. Many aquifers are relatively high yielding small carbonate units where the total groundwater level drawdown may currently exceed 300m. Groundwater storage depletion is estimated about 15km(3). This volume is close to the total contribution of the Tagus-Segura water transfer, but without large investments paid for with public funds. Seawater desalination complements urban supply and part of cash crop cultivation. Reclaimed urban waste water is used for irrigation. Groundwater mining produces benefits but associated to sometimes serious economic, administrative, legal and environmental problems. The use of an exhaustible vital resource raises ethical concerns. It cannot continue under the current legal conditions. A progressive change of water use paradigm is the way out, but this is not in the mind of most water managers and politicians. The positive and negative results observed in south-eastern Spain may help to analyse other areas under similar hydrogeological conditions in a less advanced stage of water use evolution.

20.
Sci Total Environ ; 541: 303-318, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410705

RESUMO

Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA