Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 39(5): 347-357, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997427

RESUMO

Genetic drive represents a fundamental evolutionary force that can exact profound change to the genetic composition of populations by biasing allele transmission. Herein I propose that the use of synthetic homing gene drives, the human-mediated analog of endogenous genetic drives, warrants the designation of 'genetic welding' as an anthropogenic evolutionary force. Conceptually, this distinction parallels that of artificial and natural selection. Genetic welding is capable of imposing complex and rapid heritable phenotypic change on entire populations, whether motivated by biodiversity conservation or public health. Unanticipated possible long-term evolutionary outcomes, however, demand further investigation and bioethical consideration. The emerging importance of genetic welding also compels our explicit recognition of genetic drive as an addition to the other four fundamental forces of evolution.


Assuntos
Tecnologia de Impulso Genético , Genes Sintéticos , Humanos , Seleção Genética , Alelos
2.
PLoS Genet ; 19(8): e1010879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585484

RESUMO

Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.


Assuntos
Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Polimorfismo Genético , Evolução Biológica , Genômica , Variação Genética
3.
PLoS Genet ; 17(3): e1009409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33667233

RESUMO

When gene regulatory networks diverge between species, their dysfunctional expression in inter-species hybrid individuals can create genetic incompatibilities that generate the developmental defects responsible for intrinsic post-zygotic reproductive isolation. Both cis- and trans-acting regulatory divergence can be hastened by directional selection through adaptation, sexual selection, and inter-sexual conflict, in addition to cryptic evolution under stabilizing selection. Dysfunctional sex-biased gene expression, in particular, may provide an important source of sexually-dimorphic genetic incompatibilities. Here, we characterize and compare male and female/hermaphrodite transcriptome profiles for sibling nematode species Caenorhabditis briggsae and C. nigoni, along with allele-specific expression in their F1 hybrids, to deconvolve features of expression divergence and regulatory dysfunction. Despite evidence of widespread stabilizing selection on gene expression, misexpression of sex-biased genes pervades F1 hybrids of both sexes. This finding implicates greater fragility of male genetic networks to produce dysfunctional organismal phenotypes. Spermatogenesis genes are especially prone to high divergence in both expression and coding sequences, consistent with a "faster male" model for Haldane's rule and elevated sterility of hybrid males. Moreover, underdominant expression pervades male-biased genes compared to female-biased and sex-neutral genes and an excess of cis-trans compensatory regulatory divergence for X-linked genes underscores a "large-X effect" for hybrid male expression dysfunction. Extensive regulatory divergence in sex determination pathway genes likely contributes to demasculinization of XX hybrids. The evolution of genetic incompatibilities due to regulatory versus coding sequence divergence, however, are expected to arise in an uncorrelated fashion. This study identifies important differences between the sexes in how regulatory networks diverge to contribute to sex-biases in how genetic incompatibilities manifest during the speciation process.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Hibridização Genética , Cromossomos Sexuais , Transcriptoma , Animais , Caenorhabditis/genética , Feminino , Masculino , Fatores Sexuais , Especificidade da Espécie , Espermatogênese
4.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223483

RESUMO

Geographically distinct populations can adapt to the temperature conditions of their local environment, leading to temperature-dependent fitness differences between populations. Consistent with local adaptation, phylogeographically distinct Caenorhabditis briggsae nematodes show distinct fitness responses to temperature. The genetic mechanisms underlying local adaptation, however, remain unresolved. To investigate the potential role of small noncoding RNAs in genotype-specific responses to temperature, we quantified small RNA expression using high-throughput sequencing of C. briggsae nematodes from tropical and temperate strain genotypes reared under three temperature conditions (14 °C, 20 °C, and 30 C). Strains representing both tropical and temperate regions showed significantly lower expression of PIWI-interacting RNAs (piRNAs) at high temperatures, primarily mapping to a large ∼7 Mb long piRNA cluster on chromosome IV. We also documented decreased expression of 22G-RNAs antisense to protein-coding genes and other genomic features at high rearing temperatures for the thermally-intolerant temperate strain genotype, but not for the tropical strain genotype. Reduced 22G-RNA expression was widespread along chromosomes and among feature types, indicative of a genome-wide response. Targets of the EGO-1/CSR-1 22G-RNA pathway were most strongly impacted compared with other 22G-RNA pathways, implicating the CSR-1 Argonaute and its RNA-dependent RNA polymerase EGO-1 in the genotype-dependent modulation of C. briggsae 22G-RNAs under chronic thermal stress. Our work suggests that gene regulation via small RNAs may be an important contributor to the evolution of local adaptations.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Temperatura , RNA Interferente Pequeno/genética , Patrimônio Genético , RNA Polimerase Dependente de RNA
5.
Evol Dev ; 25(4-5): 289-327, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37545126

RESUMO

Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.


Assuntos
Epigênese Genética , Especiação Genética , Animais , Redes Reguladoras de Genes , Isolamento Reprodutivo , Evolução Molecular
6.
Proc Biol Sci ; 290(2008): 20231854, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817601

RESUMO

Differential gene expression represents a fundamental cause and manifestation of phenotypic plasticity. Adaptive phenotypic plasticity in gene expression as a trait evolves when alleles that mediate gene regulation serve to increase organismal fitness by improving the alignment of variation in gene expression with variation in circumstances. Among the diverse circumstances that a gene encounters are distinct cell types, developmental stages and sexes, as well as an organism's extrinsic ecological environments. Consequently, adaptive phenotypic plasticity provides a common framework to consider diverse evolutionary problems by considering the shared implications of alleles that produce context-dependent gene expression. From this perspective, adaptive plasticity represents an evolutionary resolution to conflicts of interest that arise from any negatively pleiotropic effects of expression of a gene across ontogeny, among tissues, between the sexes, or across extrinsic environments. This view highlights shared properties within the general relation of fitness, trait expression and context that may nonetheless differ substantively in the grain of selection within and among generations to influence the likelihood of adaptive plasticity as an evolutionary response. Research programmes that historically have focused on these separate issues may use the insights from one another by recognizing their shared dependence on context-dependent gene regulatory evolution.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Especificidade de Órgãos , Adaptação Fisiológica/fisiologia , Evolução Molecular , Meio Ambiente , Fenótipo
7.
J Med Ethics ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37407027

RESUMO

CRISPR-Cas9 genome editing can and has altered human genomes, bringing bioethical debates about this capability to the forefront of philosophical and policy considerations. Here, I consider the underexplored implications of CRISPR-Cas9 gene drives for heritable human genome editing. Modification gene drives applied to heritable human genome editing would introduce a novel form of involuntary eugenic practice that I term guerrilla eugenics. Once introduced into a genome, stealth genetic editing by a gene drive genetic element would occur each subsequent generation irrespective of whether reproductive partners consent to it and irrespective of whether the genetic change confers any benefit. By overriding the ability to 'opt in' to genome editing, gene drives compromise the autonomy of carrier individuals and their reproductive partners to choose to use or avoid genome editing and impose additional burdens on those who hope to 'opt out' of further genome editing. High incidence of an initially rare gene drive in small human communities could occur within 200 years, with evolutionary fixation globally in a timeframe that is thousands of times sooner than achievable by non-drive germline editing. Following any introduction of heritable gene drives into human genomes, practices intended for surveillance or reversal also create fundamental ethical problems. Current policy guidelines do not comment explicitly on gene drives in humans. These considerations motivate an explicit moratorium as being warranted on gene drive development in heritable human genome editing.

8.
BMC Neurosci ; 20(1): 26, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182018

RESUMO

BACKGROUND: Animal responses to thermal stimuli involve intricate contributions of genetics, neurobiology and physiology, with temperature variation providing a pervasive environmental factor for natural selection. Thermal behavior thus exemplifies a dynamic trait that requires non-trivial phenotypic summaries to appropriately capture the trait in response to a changing environment. To characterize the deterministic and plastic components of thermal responses, we developed a novel micro-droplet assay of nematode behavior that permits information-dense summaries of dynamic behavioral phenotypes as reaction norms in response to increasing temperature (thermal tolerance curves, TTC). RESULTS: We found that C. elegans TTCs shift predictably with rearing conditions and developmental stage, with significant differences between distinct wildtype genetic backgrounds. Moreover, after screening TTCs for 58 C. elegans genetic mutant strains, we determined that genes affecting thermosensation, including cmk-1 and tax-4, potentially play important roles in the behavioral control of locomotion at high temperature, implicating neural decision-making in TTC shape rather than just generalized physiological limits. However, expression of the transient receptor potential ion channel TRPA-1 in the nervous system is not sufficient to rescue rearing-dependent plasticity in TTCs conferred by normal expression of this gene, indicating instead a role for intestinal signaling involving TRPA-1 in the adaptive plasticity of thermal performance. CONCLUSIONS: These results implicate nervous system and non-nervous system contributions to behavior, in addition to basic cellular physiology, as key mediators of evolutionary responses to selection from temperature variation in nature.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Canais Iônicos/fisiologia , Locomoção/fisiologia , Canal de Cátion TRPA1/fisiologia , Sensação Térmica/fisiologia , Adaptação Fisiológica/genética , Animais , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Temperatura Alta , Canais Iônicos/genética , Estágios do Ciclo de Vida/fisiologia , Mutação , Sistema Nervoso/metabolismo , Canal de Cátion TRPA1/biossíntese
9.
New Phytol ; 224(3): 1080-1094, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336389

RESUMO

The evolution of predominant self-fertilisation frequently coincides with the evolution of a collection of phenotypes that comprise the 'selfing syndrome', in both plants and animals. Genomic features also display a selfing syndrome. Selfing syndrome traits often involve changes to male and female reproductive characters that were subject to sexual selection and sexual conflict in the obligatorily outcrossing ancestor, including the gametic phase for both plants and animals. Rapid evolution of reproductive traits, due to both relaxed selection and directional selection under the new status of predominant selfing, lays the genetic groundwork for reproductive isolation. Consequently, shifts in sexual selection pressures coupled to transitions to selfing provide a powerful paradigm for investigating the speciation process. Plant and animal studies, however, emphasise distinct selective forces influencing reproductive-mode transitions: genetic transmission advantage to selfing or reproductive assurance outweighing the costs of inbreeding depression vs the costs of males and meiosis. Here, I synthesise links between sexual selection, evolution of selfing and speciation, with particular focus on identifying commonalities and differences between plant and animal systems and pointing to areas warranting further synergy.


Assuntos
Especiação Genética , Plantas/genética , Seleção Genética , Autofertilização/fisiologia , Animais , Característica Quantitativa Herdável , Isolamento Reprodutivo
10.
Mol Ecol ; 28(16): 3681-3697, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31325381

RESUMO

Understanding the plasticity, robustness and modularity of transcriptome expression to genetic and environmental conditions is crucial to deciphering how organisms adapt in nature. To test how genome architecture influences transcriptome profiles, we quantified expression responses for distinct temperature-adapted genotypes of the nematode Caenorhabditis briggsae when exposed to chronic temperature stresses throughout development. We found that 56% of the 8,795 differentially expressed genes show genotype-specific changes in expression in response to temperature (genotype-by-environment interactions, GxE). Most genotype-specific responses occur under heat stress, indicating that cold vs. heat stress responses involve distinct genomic architectures. The 22 co-expression modules that we identified differ in their enrichment of genes with genetic vs. environmental vs. interaction effects, as well as their genomic spatial distributions, functional attributes and rates of molecular evolution at the sequence level. Genes in modules enriched for simple effects of either genotype or temperature alone tend to evolve especially rapidly, consistent with disproportionate influence of adaptation or weaker constraint on these subsets of loci. Chromosome-scale heterogeneity in nucleotide polymorphism, however, rather than the scale of individual genes predominates as the source of genetic differences among expression profiles, and natural selection regimes are largely decoupled between coding sequences and noncoding flanking sequences that contain cis-regulatory elements. These results illustrate how the form of transcriptome modularity and genome structure contribute to predictable profiles of evolutionary change.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Interação Gene-Ambiente , Genoma Helmíntico , Transcriptoma , Animais , Temperatura Baixa , Resposta ao Choque Frio , Genótipo , Resposta ao Choque Térmico , Temperatura Alta , Polimorfismo de Nucleotídeo Único
11.
Nat Rev Genet ; 14(4): 262-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23478346

RESUMO

Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.


Assuntos
Evolução Molecular , Genoma/genética , Polimorfismo Genético , Seleção Genética , Animais , Humanos , Modelos Genéticos , Mutação , Recombinação Genética
12.
Genome Res ; 25(5): 667-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25783854

RESUMO

The nematode Caenorhabditis briggsae is a model for comparative developmental evolution with C. elegans. Worldwide collections of C. briggsae have implicated an intriguing history of divergence among genetic groups separated by latitude, or by restricted geography, that is being exploited to dissect the genetic basis to adaptive evolution and reproductive incompatibility; yet, the genomic scope and timing of population divergence is unclear. We performed high-coverage whole-genome sequencing of 37 wild isolates of the nematode C. briggsae and applied a pairwise sequentially Markovian coalescent (PSMC) model to 703 combinations of genomic haplotypes to draw inferences about population history, the genomic scope of natural selection, and to compare with 40 wild isolates of C. elegans. We estimate that a diaspora of at least six distinct C. briggsae lineages separated from one another approximately 200,000 generations ago, including the "Temperate" and "Tropical" phylogeographic groups that dominate most samples worldwide. Moreover, an ancient population split in its history approximately 2 million generations ago, coupled with only rare gene flow among lineage groups, validates this system as a model for incipient speciation. Low versus high recombination regions of the genome give distinct signatures of population size change through time, indicative of widespread effects of selection on highly linked portions of the genome owing to extreme inbreeding by self-fertilization. Analysis of functional mutations indicates that genomic context, owing to selection that acts on long linkage blocks, is a more important driver of population variation than are the functional attributes of the individually encoded genes.


Assuntos
Caenorhabditis elegans/genética , Evolução Molecular , Especiação Genética , Genoma Helmíntico , Seleção Genética , Animais , Caenorhabditis elegans/fisiologia , Endogamia , Mutação , Autofertilização
13.
RNA ; 22(7): 968-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27140965

RESUMO

MicroRNAs (miRNAs) comprise a class of short noncoding RNA molecules that play diverse developmental and physiological roles by controlling mRNA abundance and protein output of the vast majority of transcripts. Despite the importance of miRNAs in regulating gene function, we still lack a complete understanding of how miRNAs themselves are transcriptionally regulated. To fill this gap, we predicted regulatory sequences by searching for abundant short motifs located upstream of miRNAs in eight species of Caenorhabditis nematodes. We identified three conserved motifs across the Caenorhabditis phylogeny that show clear signatures of purifying selection from comparative genomics, patterns of nucleotide changes in motifs of orthologous miRNAs, and correlation between motif incidence and miRNA expression. We then validated our predictions with transgenic green fluorescent protein reporters and site-directed mutagenesis for a subset of motifs located in an enhancer region upstream of let-7 We demonstrate that a CT-dinucleotide motif is sufficient for proper expression of GFP in the seam cells of adult C. elegans, and that two other motifs play incremental roles in combination with the CT-rich motif. Thus, functional tests of sequence motifs identified through analysis of molecular evolutionary signatures provide a powerful path for efficiently characterizing the transcriptional regulation of miRNA genes.


Assuntos
Caenorhabditis/genética , MicroRNAs/genética , RNA de Helmintos/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Regulação da Expressão Gênica , Filogenia
14.
Mol Ecol ; 27(19): 3925-3934, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29134711

RESUMO

Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation.


Assuntos
Caenorhabditis/genética , Especiação Genética , Isolamento Reprodutivo , Cromossomo X/genética , Animais , Evolução Molecular , Feminino , Masculino , Reprodução
15.
Heredity (Edinb) ; 121(2): 169-182, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29626207

RESUMO

Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.


Assuntos
Caenorhabditis/genética , Núcleo Celular/genética , Infertilidade Masculina/genética , Mitocôndrias/genética , Modelos Genéticos , Animais , Evolução Biológica , Caenorhabditis/classificação , Cruzamentos Genéticos , Feminino , Genômica , Masculino
16.
BMC Ecol ; 18(1): 46, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400870

RESUMO

BACKGROUND: Reproductive interference can mediate interference competition between species through sexual interactions that reduce the fitness of one species by another. Theory shows that the positive frequency-dependent effects of such costly errors in mate recognition can dictate species coexistence or exclusion even with countervailing resource competition differences between species. While usually framed in terms of pre-mating or post-zygotic costs, reproductive interference manifests between individual Caenorhabditis nematodes from negative interspecies gametic interactions: sperm cells from interspecies matings can migrate ectopically to induce female sterility and premature death. The potential for reproductive interference to exert population level effects on Caenorhabditis trait evolution and community structure, however, remains unknown. RESULTS: Here we test whether a species that is superior in individual-level reproductive interference (C. nigoni) can exact negative demographic effects on competitor species that are superior in resource competition (C. briggsae and C. elegans). We observe coexistence over six generations and find evidence of demographic reproductive interference even under conditions unfavorable to its influence. C. briggsae and C. elegans show distinct patterns of reproductive interference in competitive interactions with C. nigoni. CONCLUSIONS: These results affirm that individual level negative effects of reproductive interference mediated by gamete interactions can ramify to population demography, with the potential to influence patterns of species coexistence separately from the effects of direct resource competition.


Assuntos
Biota , Caenorhabditis/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Dinâmica Populacional , Crescimento Demográfico , Reprodução
17.
PLoS Genet ; 11(6): e1005323, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26114425

RESUMO

The self-fertile nematode worms Caenorhabditis elegans, C. briggsae, and C. tropicalis evolved independently from outcrossing male-female ancestors and have genomes 20-40% smaller than closely related outcrossing relatives. This pattern of smaller genomes for selfing species and larger genomes for closely related outcrossing species is also seen in plants. We use comparative genomics, including the first high quality genome assembly for an outcrossing member of the genus (C. remanei) to test several hypotheses for the evolution of genome reduction under a change in mating system. Unlike plants, it does not appear that reductions in the number of repetitive elements, such as transposable elements, are an important contributor to the change in genome size. Instead, all functional genomic categories are lost in approximately equal proportions. Theory predicts that self-fertilization should equalize the effective population size, as well as the resulting effects of genetic drift, between the X chromosome and autosomes. Contrary to this, we find that the self-fertile C. briggsae and C. elegans have larger intergenic spaces and larger protein-coding genes on the X chromosome when compared to autosomes, while C. remanei actually has smaller introns on the X chromosome than either self-reproducing species. Rather than being driven by mutational biases and/or genetic drift caused by a reduction in effective population size under self reproduction, changes in genome size in this group of nematodes appear to be caused by genome-wide patterns of gene loss, most likely generated by genomic adaptation to self reproduction per se.


Assuntos
Evolução Biológica , Caenorhabditis/genética , Tamanho do Genoma , Genoma Helmíntico , Reprodução/genética , Animais , Caenorhabditis/fisiologia , Caenorhabditis elegans/genética , Elementos de DNA Transponíveis , Feminino , Proteínas de Helminto/genética , Masculino , Autofertilização , Cromossomo X
18.
PLoS Biol ; 12(7): e1001915, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25072732

RESUMO

Conflict between the sexes over reproductive interests can drive rapid evolution of reproductive traits and promote speciation. Here we show that inter-species mating between Caenorhabditis nematodes sterilizes maternal individuals. The principal effectors of male-induced harm are sperm cells, which induce sterility and shorten lifespan by displacing conspecific sperm, invading the ovary, and sometimes breaching the gonad to infiltrate other tissues. This sperm-mediated harm is pervasive across species, but idiosyncrasies in its magnitude implicate both independent histories of sexually antagonistic coevolution within species and differences in reproductive mode (self-fertilizing hermaphrodites versus females) in determining its severity. Consistent with this conclusion, in androdioecious species the hermaphrodites are more vulnerable, the males more benign, or both. Patterns of assortative mating and a low incidence of invasive sperm occurring with conspecific mating are indicative of ongoing intra-specific sexual conflict that results in inter-species reproductive incompatibility.


Assuntos
Caenorhabditis/fisiologia , Reprodução/fisiologia , Isolamento Reprodutivo , Espermatozoides/fisiologia , Animais , Feminino , Organismos Hermafroditas/fisiologia , Infertilidade/etiologia , Inseminação , Masculino , Comportamento Sexual Animal , Especificidade da Espécie
19.
Bioessays ; 37(9): 983-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26126900

RESUMO

Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.


Assuntos
Evolução Biológica , Caenorhabditis/fisiologia , Adaptação Fisiológica , Distribuição Animal , Animais , Biodiversidade , Autofertilização
20.
Bioessays ; 37(11): 1169-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26411745

RESUMO

It is tempting to invoke organismal selection as perpetually optimizing the function of any given gene. However, natural selection can drive genic functional change without improvement of biochemical activity, even to the extinction of gene activity. Detrimental mutations can creep in owing to linkage with other selectively favored loci. Selection can promote functional degradation, irrespective of genetic drift, when adaptation occurs by loss of gene function. Even stabilizing selection on a trait can lead to divergence of the underlying molecular constituents. Selfish genetic elements can also proliferate independent of any functional benefits to the host genome. Here we review the logic and evidence for these diverse processes acting in genome evolution. This collection of distinct evolutionary phenomena - while operating through easily understandable mechanisms - all contribute to the seemingly counterintuitive notion that maintenance or improvement of a gene's biochemical function sometimes do not determine its evolutionary fate.


Assuntos
Evolução Biológica , Evolução Molecular , Deriva Genética , Seleção Genética/genética , Adaptação Fisiológica/genética , Animais , Brassica/genética , Caenorhabditis/genética , Frequência do Gene/genética , Sequências Repetitivas Dispersas/genética , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA