Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuromolecular Med ; 19(2-3): 322-344, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28620826

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels. Oxygen consumption was decreased by alpha-synuclein overexpression, but ATP levels did not decrease and ROS levels did not increase. Treatment with ferrous sulfate, a ROS generator, resulted in decreased oxygen consumption in both control and alpha-synuclein overexpressing cells. However, this treatment only decreased ATP levels and increased ROS production in the cells overexpressing alpha-synuclein. Similarly, paraquat, another ROS generator, decreased ATP levels in the alpha-synuclein overexpressing cells, but not in the control cells, further demonstrating how alpha-synuclein sensitized the cells to oxidative insult. Proteomic analysis yielded molecular insights into the cellular adaptations to alpha-synuclein overexpression, such as the increased abundance of many mitochondrial proteins. Many amino acids and citric acid cycle intermediates and their ester forms were individually supplemented to the cells with L-serine, L-proline, L-aspartate, or L-glutamine decreasing ROS production in oxidatively stressed alpha-synuclein overexpressing cells, while diethyl oxaloacetate or L-valine supplementation increased ATP levels. These results suggest that dietary supplementation with individual metabolites could yield bioenergetic improvements in PD patients to delay loss of dopaminergic neurons.


Assuntos
Aminoácidos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/farmacologia , Avaliação Pré-Clínica de Medicamentos , Compostos Ferrosos/farmacologia , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Paraquat/farmacologia , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA