Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 74(5): 2745-2758, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34118081

RESUMO

BACKGROUND AND AIMS: Interferon-γ (IFNγ) is a central activator of immune responses in the liver and other organs. IFNγ triggers tissue injury and inflammation in immune diseases, which occur predominantly in females for unknown reasons. Recent findings that autophagy regulates hepatotoxicity from proinflammatory cytokines led to an examination of whether defective hepatocyte autophagy underlies sex-specific liver injury and inflammation induced by IFNγ. APPROACH AND RESULTS: A lentiviral autophagy-related 5 (Atg5) knockdown was performed to decrease autophagy-sensitized alpha mouse liver (AML 12) hepatocytes to death from IFNγ in combination with IL-1ß or TNF. Death was necrosis attributable to impaired energy homeostasis and adenosine triphosphate depletion. Male mice with decreased autophagy from a tamoxifen-inducible, hepatocyte-specific Atg5 knockout were resistant to IFNγ hepatotoxicity whereas female knockout mice developed liver injury and inflammation. Female mice had increased IFNγ-induced signal transducer and activator of transcription 1 (STAT1) levels compared to males. Blocking STAT1, but not interferon regulatory factor 1, signaling prevented IFNγ-induced hepatocyte death in autophagy-deficient AML12 cells and female mice. The mechanism of death is STAT1-induced overexpression of nitric oxide synthase 2 (NOS2) as in vitro hepatocyte death and in vivo liver injury were blocked by NOS2 inhibition. CONCLUSIONS: Decreased hepatocyte autophagy sensitizes mice to IFNγ-induced liver injury and inflammation through overactivation of STAT1 signaling that causes NOS2 overexpression. Hepatotoxicity is restricted to female mice, suggesting that sex-specific effects of defective autophagy may underlie the increased susceptibility of females to IFNγ-mediated immune diseases.


Assuntos
Autofagia/imunologia , Hepatite/imunologia , Interferon gama/metabolismo , Fígado/patologia , Animais , Apoptose/imunologia , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Feminino , Técnicas de Silenciamento de Genes , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos , Humanos , Fígado/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT1/metabolismo , Fatores Sexuais , Transdução de Sinais/imunologia
2.
Hepatology ; 72(2): 595-608, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32108953

RESUMO

BACKGROUND AND AIMS: The proinflammatory cytokine IL-1ß has been implicated in the pathophysiology of nonalcoholic and alcoholic steatohepatitis. How IL-1ß promotes liver injury in these diseases is unclear, as no IL-1ß receptor-linked death pathway has been identified. Autophagy functions in hepatocyte resistance to injury and death, and findings of decreased hepatic autophagy in many liver diseases suggest a role for impaired autophagy in disease pathogenesis. Recent findings that autophagy blocks mouse liver injury from lipopolysaccharide led to an examination of autophagy's function in hepatotoxicity from proinflammatory cytokines. APPROACH AND RESULTS: AML12 cells with decreased autophagy from a lentiviral autophagy-related 5 (Atg5) knockdown were resistant to toxicity from TNF, but sensitized to death from IL-1ß, which was markedly amplified by TNF co-treatment. IL-1ß/TNF death was necrosis by trypan blue and propidium iodide positivity, absence of mitochondrial death pathway and caspase activation, and failure of a caspase inhibitor or necrostatin-1s to prevent death. IL-1ß/TNF depleted autophagy-deficient cells of ATP, and ATP depletion and cell death were prevented by supplementation with the energy substrate pyruvate or oleate. Pharmacological inhibitors and genetic knockdown studies demonstrated that IL-1ß/TNF-induced necrosis resulted from lysosomal permeabilization and release of cathepsins B and L in autophagy-deficient cells. Mice with a tamoxifen-inducible, hepatocyte-specific Atg5 knockout were similarly sensitized to cathepsin-dependent hepatocellular injury and death from IL-1ß/TNF in combination, but neither IL-1ß nor TNF alone. Knockout mice had increased hepatic inflammation, and IL-1ß/TNF-treated, autophagy-deficient AML12 cells secreted exosomes with proinflammatory damage-associated molecular patterns. CONCLUSIONS: The findings delineate mechanisms by which decreased hepatocyte autophagy promotes IL-1ß/TNF-induced necrosis from impaired energy homeostasis and lysosomal permeabilization and inflammation through the secretion of exosomal damage-associated molecular patterns.


Assuntos
Autofagia , Hepatócitos/fisiologia , Interleucina-1beta/fisiologia , Hepatopatias/etiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células Cultivadas , Feminino , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Hepatol ; 73(5): 1013-1022, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32540177

RESUMO

BACKGROUND & AIMS: The heterodimeric integrin receptor α4ß7 regulates CD4 T cell recruitment to inflamed tissues, but its role in the pathogenesis of non-alcoholic steatohepatitis (NASH) is unknown. Herein, we examined the role of α4ß7-mediated recruitment of CD4 T cells to the intestine and liver in NASH. METHODS: Male littermate F11r+/+ (control) and junctional adhesion molecule A knockout F11r-/- mice were fed a normal diet or a western diet (WD) for 8 weeks. Liver and intestinal tissues were analyzed by histology, quantitative reverse transcription PCR (qRT-PCR), 16s rRNA sequencing and flow cytometry. Colonic mucosa-associated microbiota were analyzed using 16s rRNA sequencing. Liver biopsies from patients with NASH were analyzed by confocal imaging and qRT-PCR. RESULTS: WD-fed knockout mice developed NASH and had increased hepatic and intestinal α4ß7+ CD4 T cells relative to control mice who developed mild hepatic steatosis. The increase in α4ß7+ CD4 T cells was associated with markedly higher expression of the α4ß7 ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) in the colonic mucosa and livers of WD-fed knockout mice. Elevated MAdCAM-1 expression correlated with increased mucosa-associated Proteobacteria in the WD-fed knockout mice. Antibiotics reduced MAdCAM-1 expression indicating that the diet-altered microbiota promoted colonic and hepatic MAdCAM-1 expression. α4ß7 blockade in WD-fed knockout mice significantly decreased α4ß7+ CD4 T cell recruitment to the intestine and liver, attenuated hepatic inflammation and fibrosis, and improved metabolic indices. MAdCAM-1 blockade also reduced hepatic inflammation and fibrosis in WD-fed knockout mice. Hepatic MAdCAM-1 expression was elevated in patients with NASH and correlated with higher expression of α4 and ß7 integrins. CONCLUSIONS: These findings establish α4ß7/MAdCAM-1 as a critical axis regulating NASH development through colonic and hepatic CD4 T cell recruitment. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is an advanced and progressive form of non-alcoholic fatty liver disease (NAFLD), and despite its growing incidence no therapies currently exist to halt NAFLD progression. Herein, we show that blocking integrin receptor α4ß7-mediated recruitment of CD4 T cells to the intestine and liver not only attenuates hepatic inflammation and fibrosis, but also improves metabolic derangements associated with NASH. These findings provide evidence for the potential therapeutic application of α4ß7 antibody in the treatment of human NASH.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Dieta Ocidental/efeitos adversos , Integrinas/metabolismo , Mucosa Intestinal/imunologia , Fígado/imunologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Humanos , Integrinas/antagonistas & inibidores , Integrinas/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Mucoproteínas/antagonistas & inibidores , Mucoproteínas/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Ribossômico 16S/genética , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética
4.
Hepatology ; 69(6): 2455-2470, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715741

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a protein that is required for the development and survival of enteric, sympathetic, and catecholaminergic neurons. We previously reported that GDNF is protective against high fat diet (HFD)-induced hepatic steatosis in mice through suppression of hepatic expression of peroxisome proliferator activated receptor-γ and genes encoding enzymes involved in de novo lipogenesis. We also reported that transgenic overexpression of GDNF in mice prevented the HFD-induced liver accumulation of the autophagy cargo-associated protein p62/sequestosome 1 characteristic of impaired autophagy. Here we investigated the effects of GDNF on hepatic autophagy in response to increased fat load, and on hepatocyte mitochondrial fatty acid ß-oxidation and cell survival. GDNF not only prevented the reductions in the liver levels of some key autophagy-related proteins, including Atg5, Atg7, Beclin-1 and LC3A/B-II, seen in HFD-fed control mice, but enhanced their levels after 12 weeks of HFD feeding. In vitro, GDNF accelerated autophagic cargo clearance in primary mouse hepatocytes and a rat hepatocyte cell line, and reduced the phosphorylation of the mechanistic target of rapamycin complex downstream-target p70S6 kinase similar to the autophagy activator rapamycin. GDNF also enhanced mitochondrial fatty acid ß-oxidation in primary mouse and rat hepatocytes, and protected against palmitate-induced lipotoxicity. Conclusion: We demonstrate a role for GDNF in enhancing hepatic autophagy and in potentiating mitochondrial function and fatty acid oxidation. Our studies show that GDNF and its receptor agonists could be useful for enhancing hepatocyte survival and protecting against fatty acid-induced hepatic lipotoxicity.


Assuntos
Autofagia/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Hepatócitos/metabolismo , Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Palmitatos/metabolismo , Animais , Morte Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Células Hep G2/citologia , Células Hep G2/metabolismo , Hepatócitos/citologia , Humanos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Consumo de Oxigênio/fisiologia , Distribuição Aleatória , Ratos , Sensibilidade e Especificidade , Transdução de Sinais , Sirolimo/farmacologia
5.
Alcohol Clin Exp Res ; 43(7): 1403-1413, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30964198

RESUMO

BACKGROUND: One mechanism underlying the development of alcoholic liver disease is overactivation of the innate immune response. Recent investigations indicate that the lysosomal pathway of autophagy down-regulates the inflammatory state of hepatic macrophages, suggesting that macrophage autophagy may regulate innate immunity in alcoholic liver disease. The function of macrophage autophagy in the development of alcoholic liver disease was examined in studies employing mice with a myeloid-specific decrease in autophagy. METHODS: Littermate control and Atg5Δmye mice lacking Atg5-dependent myeloid autophagy were administered a Lieber-DeCarli control (CD) or ethanol diet (ED) alone or together with lipopolysaccharide (LPS) and examined for the degree of liver injury and inflammation. RESULTS: Knockout mice with decreased macrophage autophagy had equivalent steatosis but increased mortality and liver injury from ED alone. Increased liver injury and hepatocyte death also occurred in Atg5Δmye mice administered ED and LPS in association with systemic inflammation as indicated by elevated serum levels of proinflammatory cytokines. Hepatic macrophage and neutrophil infiltration were unaffected by decreased autophagy, but levels of proinflammatory cytokine gene induction were significantly increased in the livers but not adipose tissue of knockout mice treated with ED and LPS. Inflammasome activation was increased in ED/LPS-treated knockout mice resulting in elevated interleukin (IL)-1ß production. Increased IL-1ß promoted alcoholic liver disease as liver injury was decreased by the administration of an IL-1 receptor antagonist. CONCLUSIONS: Macrophage autophagy functions to prevent liver injury from alcohol. This protection is mediated in part by down-regulation of inflammasome-dependent and inflammasome-independent hepatic inflammation. Therapies to increase autophagy may be effective in this disease through anti-inflammatory effects on macrophages.


Assuntos
Autofagia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatopatias Alcoólicas/patologia , Fígado/patologia , Macrófagos/patologia , Animais , Proteína 5 Relacionada à Autofagia/genética , Depressores do Sistema Nervoso Central/toxicidade , Citocinas/sangue , Dieta , Etanol/toxicidade , Feminino , Hepatócitos/patologia , Inflamassomos , Células de Kupffer/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos
6.
Hepatology ; 66(3): 922-935, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28470665

RESUMO

Toxin-induced liver diseases lack effective therapies despite increased understanding of the role factors such as an overactive innate immune response play in the pathogenesis of this form of hepatic injury. Pentamidine is an effective antimicrobial agent against several human pathogens, but studies have also suggested that this drug inhibits inflammation. This potential anti-inflammatory mechanism of action, together with the development of a new oral form of pentamidine isethionate VLX103, led to investigations of the effectiveness of this drug in the prevention and treatment of hepatotoxic liver injury. Pretreatment with a single injection of VLX103 in the d-galactosamine (GalN) and lipopolysaccharide (LPS) model of acute, fulminant liver injury dramatically decreased serum alanine aminotransferase levels, histological injury, the number of terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive cells and mortality compared with vehicle-injected controls. VLX103 decreased GalN/LPS induction of tumor necrosis factor (TNF) but had no effect on other proinflammatory cytokines. VLX103 prevented the proinflammatory activation of cultured hepatic macrophages and partially blocked liver injury from GalN/TNF. In GalN/LPS-treated mice, VLX103 decreased activation of both the mitochondrial death pathway and downstream effector caspases 3 and 7, which resulted from reduced c-Jun N-terminal kinase activation and initiator caspase 8 cleavage. Delaying VLX103 treatment for up to 3 hours after GalN/LPS administration was still remarkably effective in blocking liver injury in this model. Oral administration of VLX103 also decreased hepatotoxic injury in a second more chronic model of alcohol-induced liver injury, as demonstrated by decreased serum alanine and aspartate aminotransferase levels and numbers of TUNEL-positive cells. CONCLUSION: VLX103 effectively decreases toxin-induced liver injury in mice and may be an effective therapy for this and other forms of human liver disease. (Hepatology 2017;66:922-935).


Assuntos
Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/prevenção & controle , Pentamidina/farmacologia , Animais , Biópsia por Agulha , Western Blotting , Citocinas/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/mortalidade , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Taxa de Sobrevida
7.
Kidney Int ; 90(5): 985-996, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27457912

RESUMO

Patients with chronic kidney disease (CKD) develop increased levels of the phosphate-regulating hormone, fibroblast growth factor (FGF) 23, that are associated with a higher risk of mortality. Increases in inflammatory markers are another common feature that predicts poor clinical outcomes. Elevated FGF23 is associated with higher circulating levels of inflammatory cytokines in CKD, which can stimulate osteocyte production of FGF23. Here, we studied whether FGF23 can directly stimulate hepatic production of inflammatory cytokines in the absence of α-klotho, an FGF23 coreceptor in the kidney that is not expressed by hepatocytes. By activating FGF receptor isoform 4 (FGFR4), FGF23 stimulated calcineurin signaling in cultured hepatocytes, which increased the expression and secretion of inflammatory cytokines, including C-reactive protein. Elevating serum FGF23 levels increased hepatic and circulating levels of C-reactive protein in wild-type mice, but not in FGFR4 knockout mice. Administration of an isoform-specific FGFR4 blocking antibody reduced hepatic and circulating levels of C-reactive protein in the 5/6 nephrectomy rat model of CKD. Thus, FGF23 can directly stimulate hepatic secretion of inflammatory cytokines. Our findings indicate a novel mechanism of chronic inflammation in patients with CKD and suggest that FGFR4 blockade might have therapeutic anti-inflammatory effects in CKD.


Assuntos
Citocinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Calcineurina/metabolismo , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Camundongos , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama/metabolismo , Cultura Primária de Células , Ratos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
8.
J Hepatol ; 64(1): 118-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26325539

RESUMO

BACKGROUND & AIMS: Overactivation of the innate immune response underlies many forms of liver injury including that caused by hepatotoxins. Recent studies have demonstrated that macrophage autophagy regulates innate immunity and resultant tissue inflammation. Although hepatocyte autophagy has been shown to modulate hepatic injury, little is known about the role of autophagy in hepatic macrophages during the inflammatory response to acute toxic liver injury. Our aim therefore was to determine whether macrophage autophagy functions to down regulate hepatic inflammation. METHODS: Mice with a LysM-CRE-mediated macrophage knockout of the autophagy gene ATG5 were examined for their response to toxin-induced liver injury from D-galactosamine/lipopolysaccharide (GalN/LPS). RESULTS: Knockout mice had increased liver injury from GalN/LPS as determined by significant increases in serum alanine aminotransferase, histological evidence of liver injury, positive terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling, caspase activation and mortality as compared to littermate controls. Levels of proinflammatory tumor necrosis factor and interleukin (IL)-6 hepatic mRNA and serum protein were unchanged, but serum IL-1ß was significantly increased in knockout mice. The increase in serum IL-1ß was secondary to elevated hepatic caspase 1 activation and inflammasome-mediated cleavage of pro-IL-1ß to its active form. Cultured hepatic macrophages from GalN/LPS-treated knockout mice had similarly increased IL-1ß production. Dysregulation of IL-1ß was the mechanism of increased liver injury as an IL-1 receptor antagonist prevented injury in knockout mice in concert with decreased neutrophil activation. CONCLUSIONS: Macrophage autophagy functions to limit acute toxin-induced liver injury and death by inhibiting the generation of inflammasome-dependent IL-1ß.


Assuntos
Autofagia/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Interleucina-1beta/fisiologia , Macrófagos/fisiologia , Animais , Proteína 5 Relacionada à Autofagia , Doença Hepática Induzida por Substâncias e Drogas/mortalidade , Citocinas/biossíntese , Regulação para Baixo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/fisiologia
9.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G377-86, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27469366

RESUMO

During sepsis, bacterial products, particularly LPS, trigger injury in organs such as the liver. This common condition remains largely untreatable, in part due to a lack of understanding of how high concentrations of LPS cause cellular injury. In the liver, the lysosomal degradative pathway of autophagy performs essential hepatoprotective functions and is induced by LPS. We, therefore, examined whether hepatocyte autophagy protects against liver injury from septic levels of LPS. Mice with an inducible hepatocyte-specific knockout of the critical autophagy gene Atg7 were examined for their sensitivity to high-dose LPS. Increased liver injury occurred in knockout mice, as determined by significantly increased serum alanine aminotransferase levels, histological evidence of liver injury, terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling, and effector caspase-3 and -7 activation. Hepatic inflammation and proinflammatory cytokine induction were unaffected by the decrease in hepatocyte autophagy. Although knockout mice had normal NF-κB signaling, hepatic levels of Akt1 and Akt2 phosphorylation in response to LPS were decreased. Cultured hepatocytes from knockout mice displayed a generalized defect in Akt signaling in response to multiple stimuli, including LPS, TNF, and IL-1ß. Akt activation mediates hepatocyte resistance to TNF cytotoxicity, and anti-TNF antibodies significantly decreased LPS-induced liver injury in knockout mice, indicating that the loss of autophagy sensitized to TNF-dependent liver damage. Hepatocyte autophagy, therefore, protects against LPS-induced liver injury. Conditions such as aging and steatosis that impair hepatic autophagy may predispose to poor outcomes from sepsis through this mechanism.


Assuntos
Autofagia/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Lipopolissacarídeos/toxicidade , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Dig Dis Sci ; 61(5): 1304-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26725058

RESUMO

Autophagy is a lysosomal degradative pathway that functions to promote cell survival by supplying energy in times of stress or by removing damaged organelles and proteins after injury. The involvement of autophagy in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) was first suggested by the finding that this pathway mediates the breakdown of intracellular lipids in hepatocytes and therefore may regulate the development of hepatic steatosis. Subsequent studies have demonstrated additional critical functions for autophagy in hepatocytes and other hepatic cell types such as macrophages and stellate cells that regulate insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. These findings suggest a number of possible mechanistic roles for autophagy in the development of NAFLD and progression to NASH and its complications. The functions of autophagy in the liver, together with findings of decreased hepatic autophagy in association with conditions that predispose to NAFLD such as obesity and aging, suggest that autophagy may be a novel therapeutic target in this disease.


Assuntos
Autofagia/fisiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Macrófagos/fisiologia , Hepatopatia Gordurosa não Alcoólica/complicações
12.
Nature ; 458(7242): 1131-5, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19339967

RESUMO

The intracellular storage and utilization of lipids are critical to maintain cellular energy homeostasis. During nutrient deprivation, cellular lipids stored as triglycerides in lipid droplets are hydrolysed into fatty acids for energy. A second cellular response to starvation is the induction of autophagy, which delivers intracellular proteins and organelles sequestered in double-membrane vesicles (autophagosomes) to lysosomes for degradation and use as an energy source. Lipolysis and autophagy share similarities in regulation and function but are not known to be interrelated. Here we show a previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy). Lipid droplets and autophagic components associated during nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and mouse liver increased triglyceride storage in lipid droplets. This study identifies a critical function for autophagy in lipid metabolism that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.


Assuntos
Autofagia/fisiologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Animais , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia , Linhagem Celular , Colesterol/metabolismo , Gorduras na Dieta/farmacologia , Privação de Alimentos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Oxirredução , Fagossomos/metabolismo , Ratos , Triglicerídeos/metabolismo
13.
J Hepatol ; 61(5): 1126-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946279

RESUMO

BACKGROUND & AIMS: Acid sphingomyelinase (ASMase) is activated in non-alcoholic steatohepatitis (NASH). However, the contribution of ASMase to NASH is poorly understood and limited to hepatic steatosis and glucose metabolism. Here we examined the role of ASMase in high fat diet (HFD)-induced NASH. METHODS: Autophagy, endoplasmic reticulum (ER) stress and lysosomal membrane permeabilization (LMP) were determined in ASMase(-/-) mice fed a HFD. The impact of pharmacological ASMase inhibition on NASH was analyzed in wild type mice fed a HFD. RESULTS: ASMase deficiency determined resistance to hepatic steatosis mediated by a HFD or methionine-choline deficient diet. ASMase(-/-) mice were resistant to HFD-induced hepatic ER stress, but sensitive to tunicamycin-mediated ER stress, indicating selectivity in the resistance of ASMase(-/-) mice to ER stress and steatosis. Autophagic flux, determined in the presence of rapamycin and/or chloroquine, was lower in primary mouse hepatocytes (PMH) from ASMase(-/-) mice and accompanied by increased p62 levels, suggesting autophagic impairment. Moreover, autophagy suppression by chloroquine and brefeldin A caused ER stress in PMH from ASMase(+/+) mice but not in ASMase(-/-) mice. ASMase(-/-) PMH exhibited increased lysosomal cholesterol loading, decreased LMP and apoptosis resistance induced by O-methyl-serine dodecylamide hydrochloride or palmitic acid, effects that were reversed by decreasing cholesterol levels by oxysterol 25-hydroxycholesterol. In vivo pharmacological ASMase inhibition by amitriptyline, a widely used tricyclic antidepressant, protected wild type mice against HFD-induced hepatic steatosis, fibrosis, and liver damage, effects indicative of early-stage NASH. CONCLUSIONS: These findings underscore a critical role for ASMase in diet-induced NASH and suggest the potential of amitriptyline as a treatment for patients with NASH.


Assuntos
Autofagia/fisiologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Amitriptilina/farmacologia , Animais , Ceramidas/metabolismo , Colesterol/metabolismo , Deficiência de Colina/complicações , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Permeabilidade , Esfingomielina Fosfodiesterase/deficiência , Esfingomielinas/metabolismo
16.
Hepatology ; 57(3): 995-1004, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23081825

RESUMO

UNLABELLED: The prevalence of the metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in humans increases with age. It is unknown whether this association is secondary to the increased incidence of risk factors for NAFLD that occurs with aging, reflects the culmination of years of exposure to lifestyle factors such as a high-fat diet (HFD), or results from physiological changes that characterize aging. To examine this question, the development of NAFLD in response to a fixed period of HFD feeding was examined in mice of different ages. Mice aged 2, 8, and 18 months were fed 16 weeks of a low-fat diet or HFD. Increased body mass and insulin insensitivity occurred in response to HFD feeding irrespective of the age of the mice. The amount of HFD-induced hepatic steatosis as determined biochemically and histologically was also equivalent among the three ages. Liver injury occurred exclusively in the two older ages as reflected by increased serum alanine aminotransferase levels, positive terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling, and caspase activation. Older mice also had an elevated innate immune response with a more pronounced polarization of liver and adipose tissue macrophages into an M1 phenotype. Studies of cultured hepatocytes from young and old mice revealed that aged cells were selectively sensitized to the Fas death pathway. CONCLUSION: Aging does not promote the development of hepatic steatosis but leads to increased hepatocellular injury and inflammation that may be due in part to sensitization to the Fas death pathway and increased M1 macrophage polarization.


Assuntos
Tecido Adiposo/patologia , Envelhecimento/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/patologia , Animais , Morte Celular/fisiologia , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/imunologia , Hepatócitos/citologia , Humanos , Incidência , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Prevalência , Cultura Primária de Células , Fatores de Risco , Receptor fas/metabolismo
17.
Gastroenterology ; 142(4): 938-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22240484

RESUMO

BACKGROUND & AIMS: The pathogenesis of liver fibrosis involves activation of hepatic stellate cells, which is associated with depletion of intracellular lipid droplets. When hepatocytes undergo autophagy, intracellular lipids are degraded in lysosomes. We investigated whether autophagy also promotes loss of lipids in hepatic stellate cells to provide energy for their activation and extended these findings to other fibrogenic cells. METHODS: We analyzed hepatic stellate cells from C57BL/6 wild-type, Atg7(F/F), and Atg7(F/F)-GFAP-Cre mice, as well as the mouse stellate cell line JS1. Fibrosis was induced in mice using CCl(4) or thioacetamide (TAA); liver tissues and stellate cells were analyzed. Autophagy was blocked in fibrogenic cells from liver and other tissues using small interfering RNAs against Atg5 or Atg7 and chemical antagonists. Human pulmonary fibroblasts were isolated from samples of lung tissue from patients with idiopathic pulmonary fibrosis or from healthy donors. RESULTS: In mice, induction of liver injury with CCl(4) or TAA increased levels of autophagy. We also observed features of autophagy in activated stellate cells within injured human liver tissue. Loss of autophagic function in cultured mouse stellate cells and in mice following injury reduced fibrogenesis and matrix accumulation; this effect was partially overcome by providing oleic acid as an energy substrate. Autophagy also regulated expression of fibrogenic genes in embryonic, lung, and renal fibroblasts. CONCLUSIONS: Autophagy of activated stellate cells is required for hepatic fibrogenesis in mice. Selective reduction of autophagic activity in fibrogenic cells in liver and other tissues might be used to treat patients with fibrotic diseases.


Assuntos
Autofagia , Metabolismo Energético , Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Tetracloreto de Carbono , Linhagem Celular , Compostos de Epóxi/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Rim/metabolismo , Rim/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ácido Oleico/metabolismo , Interferência de RNA , Tioacetamida
18.
J Cell Biochem ; 113(10): 3254-65, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22644775

RESUMO

Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and ß-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of ß-oxidation also sensitized cells to death from menadione, and supplementation with the ß-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death.


Assuntos
Hepatócitos/patologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Vitamina K 3/toxicidade , Trifosfato de Adenosina/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Antracenos/farmacologia , Morte Celular , Linhagem Celular Transformada , Resistência a Medicamentos , Técnicas de Silenciamento de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/genética , Ácido Oleico/farmacologia , Oxirredução , Estresse Oxidativo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
Gastroenterology ; 140(7): 1895-908, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21530520

RESUMO

Autophagy is a lysosomal pathway that degrades and recycles intracellular organelles and proteins to maintain energy homeostasis during times of nutrient deprivation and to remove damaged cell components. Recent studies have identified new functions for autophagy under basal and stressed conditions. In the liver and pancreas, autophagy performs the standard functions of degrading mitochondria and aggregated proteins and regulating cell death. In addition, autophagy functions in these organs to regulate lipid accumulation in hepatic steatosis, trypsinogen activation in pancreatitis, and hepatitis virus replication. This review discusses the effects of autophagy on hepatic and pancreatic physiology and the contribution of this degradative process to diseases of these organs. The discovery of novel functions for this lysosomal pathway has increased our understanding of the pathophysiology of diseases in the liver and pancreas and suggested new possibilities for their treatment.


Assuntos
Autofagia , Hepatopatias/patologia , Fígado/patologia , Lisossomos/patologia , Pâncreas/patologia , Pancreatopatias/patologia , Animais , Humanos , Fígado/metabolismo , Fígado/fisiopatologia , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Lisossomos/metabolismo , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Pancreatopatias/metabolismo , Pancreatopatias/fisiopatologia , Transdução de Sinais
20.
PLoS One ; 17(3): e0264743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35231062

RESUMO

Fibroblast growth factor 23 (FGF23) is a bone marrow cell produced hormone that functions in the intestine and kidney to regulate phosphate homeostasis. Increased serum FGF23 is a well-established predictor of mortality in renal disease, but recent findings linking increased levels to hepatic and cardiac diseases have suggested that other organs are sources of FGF23 or targets of its effects. The potential ability of the liver to produce FGF23 in response to hepatocellular injury was therefore examined. Very low levels of Fgf23 mRNA and FGF23 protein were detected in normal mouse liver, but the amounts increased markedly during acute liver injury from the hepatotoxin carbon tetrachloride. Serum levels of intact FGF23 were elevated during liver injury from carbon tetrachloride. Chronic liver injury induced by a high fat diet or elevated bile acids also increased hepatic FGF23 levels. Stimulation of toll-like receptor (TLR) 4-driven inflammation by gut-derived lipopolysaccharide (LPS) underlies many forms of liver injury, and LPS induced Fgf23 in the liver as well as in other organs. The LPS-inducible cytokines IL-1ß and TNF increased hepatic Fgf23 expression as did a TLR2 agonist Pam2CSK3. Analysis of Fgf23 expression and FGF23 secretion in different hepatic cell types involved in liver injury identified the resident liver macrophage or Kupffer cell as a source of hepatic FGF23. LPS and cytokines selectively induced the hormone in these cells but not in hepatocytes or hepatic stellate cells. FGF23 failed to exert any autocrine effect on the inflammatory state of Kupffer cells but did trigger proinflammatory activation of hepatocytes. During liver injury inflammatory factors induce Kupffer cell production of FGF23 that may have a paracrine proinflammatory effect on hepatocytes. Liver-produced FGF23 may have systemic hormonal effects as well that influence diseases in in other organs.


Assuntos
Tetracloreto de Carbono , Células de Kupffer , Animais , Tetracloreto de Carbono/farmacologia , Citocinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Hormônios/metabolismo , Células de Kupffer/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA