Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164292

RESUMO

Cell motility is the brilliant result of cell status and its interaction with close environments. Its detection is now possible, thanks to the synergy of high-resolution camera sensors, time-lapse microscopy devices, and dedicated software tools for video and data analysis. In this scenario, we formulated a novel paradigm in which we considered the individual cells as a sort of sensitive element of a sensor, which exploits the camera as a transducer returning the movement of the cell as an output signal. In this way, cell movement allows us to retrieve information about the chemical composition of the close environment. To optimally exploit this information, in this work, we introduce a new setting, in which a cell trajectory is divided into sub-tracks, each one characterized by a specific motion kind. Hence, we considered all the sub-tracks of the single-cell trajectory as the signals of a virtual array of cell motility-based sensors. The kinematics of each sub-track is quantified and used for a classification task. To investigate the potential of the proposed approach, we have compared the achieved performances with those obtained by using a single-trajectory paradigm with the scope to evaluate the chemotherapy treatment effects on prostate cancer cells. Novel pattern recognition algorithms have been applied to the descriptors extracted at a sub-track level by implementing features, as well as samples selection (a good teacher learning approach) for model construction. The experimental results have put in evidence that the performances are higher when a further cluster majority role has been considered, by emulating a sort of sensor fusion procedure. All of these results highlighted the high strength of the proposed approach, and straightforwardly prefigure its use in lab-on-chip or organ-on-chip applications, where the cell motility analysis can be massively applied using time-lapse microscopy images.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Algoritmos , Fenômenos Biomecânicos , Movimento Celular , Análise por Conglomerados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Masculino , Microscopia , Modelos Estatísticos , Distribuição Normal , Células PC-3 , Reconhecimento Automatizado de Padrão , Software , Gravação em Vídeo
2.
Small Methods ; : e2300923, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693090

RESUMO

A novel optically induced dielectrophoresis (ODEP) system that can operate under flow conditions is designed for automatic trapping of cells and subsequent induction of 2D multi-frequency cell trajectories. Like in a "ping-pong" match, two virtual electrode barriers operate in an alternate mode with varying frequencies of the input voltage. The so-derived cell motions are characterized via time-lapse microscopy, cell tracking, and state-of-the-art machine learning algorithms, like the wavelet scattering transform (WST). As a cell-electrokinetic fingerprint, the dynamic of variation of the cell displacements happening, over time, is quantified in response to different frequency values of the induced electric field. When tested on two biological scenarios in the cancer domain, the proposed approach discriminates cellular dielectric phenotypes obtained, respectively, at different early phases of drug-induced apoptosis in prostate cancer (PC3) cells and for differential expression of the lectine-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcript levels in human colorectal adenocarcinoma (DLD-1) cells. The results demonstrate increased discrimination of the proposed system and pose an additional basis for making ODEP-based assays addressing cancer heterogeneity for precision medicine and pharmacological research.

3.
Pathogens ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839474

RESUMO

This study evaluates the feasibility of a local action program for HCV micro-elimination in highly endemic areas. Retrospective analysis: administrative and laboratory data (Local Health Unit, southern Italy) were integrated to quantize the anti-HCV-positive subjects not RNA tested and untreated HCV-infected subjects (2018-2022). Prospective analysis: all subjects admitted to a division of the LHU largest hospital (2021-2022) were tested for HCV, with linkage of active-infected patients to care. Overall, 49287 subjects were HCV-Ab tested: 1071 (2.2%) resulted positive without information for an HCV RNA test and 230 (0.5%) had an active infection not yet cured. Among 856 admitted subjects, 54 (6.3%) were HCV-Ab+ and 27 (3.0%) HCV RNA+. Of HCV-infected patients, 22.2% had advanced liver disease, highlighting the need for earlier diagnosis; 27.7% were unaware of HCV infection; and 20.4% were previously aware but never referred to a clinical center. Of these, 26% died and 74% received treatment. Our study emphasizes the value of an active HCV hospital case-finding program to enhance diagnosis in patients with several comorbidities and to easily link them to care. Our data strongly suggest extending this program to all hospital wards/access as a standard of care, particularly in highly endemic areas, to help HCV disease control and take steps in achieving the elimination goals.

4.
Patterns (N Y) ; 2(6): 100261, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34179845

RESUMO

One of the most challenging frontiers in biological systems understanding is fluorescent label-free imaging. We present here the NeuriTES platform that revisits the standard paradigms of video analysis to detect unlabeled objects and adapt to the dynamic evolution of the phenomenon under observation. Object segmentation is reformulated using robust algorithms to assure regular cell detection and transfer entropy measures are used to study the inter-relationship among the parameters related to the evolving system. We applied the NeuriTES platform to the automatic analysis of neurites degeneration in presence of amyotrophic lateral sclerosis (ALS) and to the study of the effects of a chemotherapy drug on living prostate cancer cells (PC3) cultures. Control cells have been considered in both the two cases study. Accuracy values of 93% and of 92% are achieved, respectively. NeuriTES not only represents a tool for investigation in fluorescent label-free images but demonstrates to be adaptable to individual needs.

5.
Front Oncol ; 10: 580698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194709

RESUMO

Cell motility varies according to intrinsic features and microenvironmental stimuli, being a signature of underlying biological phenomena. The heterogeneity in cell response, due to multilevel cell diversity especially relevant in cancer, poses a challenge in identifying the biological scenario from cell trajectories. We propose here a novel peer prediction strategy among cell trajectories, deciphering cell state (tumor vs. nontumor), tumor stage, and response to the anticancer drug etoposide, based on morphology and motility features, solving the strong heterogeneity of individual cell properties. The proposed approach first barcodes cell trajectories, then automatically selects the good ones for optimal model construction (good teacher and test sample selection), and finally extracts a collective response from the heterogeneous populations via cooperative learning approaches, discriminating with high accuracy prostate noncancer vs. cancer cells of high vs. low malignancy. Comparison with standard classification methods validates our approach, which therefore represents a promising tool for addressing clinically relevant issues in cancer diagnosis and therapy, e.g., detection of potentially metastatic cells and anticancer drug screening.

6.
Infect Agent Cancer ; 11: 54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822295

RESUMO

BACKGROUND: The incidence of hepatocellular carcinoma (HCC) and its association with hepatitis C (HCV) and hepatitis B virus (HBV) infections, FIB-4 index and liver enzymes was assessed in an area of the province of Naples covered by a population-based cancer registry. METHODS: We conducted a cohort investigation on 4492 individuals previously enrolled in a population-based seroprevalent survey on HCV and HBV infections. The diagnosis of HCC was assessed through a record linkage with the cancer registry. Hepatic metabolic activity was measured through serum alanine transaminase, aspartate aminotransferase, gamma-glutamyl-transferase, and platelet. The FIB-4 index was used as a marker of fibrosis. We computed HCC incidence rates (IR) for 100,000 (105) person-years of observation, and multivariable hazard ratios (HR) with 95 % confidence intervals (CI) to assess risk factors for HCC. RESULTS: Twenty two cases of HCC were diagnosed during follow-up (IR = 63.3 cases/105). Significantly increased HCC risks were documented in individuals with higher than normal liver enzymes and low platelet count; in the 239 HCV RNA-positives (HR = 61.8, 95 % CI:13.3-286); and in the 95 HBsAg-positives (HR = 75.0) -as compared to uninfected individuals. The highest FIB-4 score was associated with a 17.6-fold increased HCC risk. CONCLUSIONS: An elevated FIB-4 index turned out to be an important predictor of HCC occurrence. Although the standard method to assess hepatic fibrosis in chronic hepatitis remains the histologic staging of liver biopsy specimen, the assessment of FIB-4 in HCV RNA-positive individuals may help in identifying the highest HCC-risk individuals who need anti-HCV treatment most urgently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA