Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Water Sci Technol ; 79(4): 645-655, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30975931

RESUMO

In this study, the influence of the anaerobic mixed feeding rate on granule stability and reactor performance in a conventional sequencing batch reactor (C-SBR) was investigated while treating various industrial wastewaters. A laboratory-scale SBR fed with malting wastewater rich in phosphorus was operated for approximately 250 days, which was divided into two periods: (I) mixed pulse feed and (II) prolonged mixed feed. Initially, no bio-P activity was observed. However, by lowering the feeding rate biological P-removal was rapidly established and no effect on the aerobic granular sludge (AGS) characteristics was observed. Additionally, to investigate the effect of the mixed feeding rate when treating an industrial effluent with low phosphorus content, i.e. brewery wastewater, a laboratory-scale reactor was operated for approximately 400 days applying different mixed feeding rates. Morphological and molecular analysis indicated that a low substrate concentration promoted the enrichment of anaerobic carbon storing filaments when fed with brewery wastewater. Findings suggest that a prolonged mixed feeding regime can be used as a tool to easily establish bio-P removal in a C-SBR system for the treatment of phosphorus-rich wastewaters. It should however be considered that under P-limiting conditions, enrichment of poly-P storing filaments may occur, possibly due to their higher substrate affinity under anaerobic conditions.


Assuntos
Reatores Biológicos , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Esgotos , Águas Residuárias
2.
Water Sci Technol ; 77(9-10): 2253-2264, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29757177

RESUMO

A laboratory-scale sequencing batch reactor (SBR) was operated for 450 days to assess aerobic granule formation when treating brewery/bottling plant wastewater by consistent application of a feast/famine regime. The experiment was divided into three major periods according to the different operational conditions: (I) no pH control and strong fluctuations in organic loading rate (OLR) (1.18 ± 0.25 kgCOD·(m3·day)-1), (II) pH control and aeration control strategy to reduce OLR fluctuations (1.45 ± 0.65 kgCOD·(m3·day)-1) and (III) no pH control and stable OLR (1.42 ± 0.18 kgCOD·(m3·day)-1). Aerobic granule formation was successful after 80 days and maintained during the subsequent 380 days. The aerobic granular sludge was characterized by SVI5 and SVI30 values below 60 mL.g-1 and dominated by granular, dense structures. An oxygen uptake rate based aeration control strategy insured endogenous respiration at the end of the aerobic phase, resulting in stable SBR operation when the influent composition fluctuated. The quantitative polymerase chain reaction results show no significant enrichment of Accumulibacter or Competibacter during the granulation process. The 16S rRNA sequencing results indicate enrichment of other, possibly important species during aerobic granule formation while treating brewery wastewaters.


Assuntos
Reatores Biológicos , Indústria Alimentícia , Resíduos Industriais , Esgotos/química , Águas Residuárias/química , Aerobiose , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos/métodos
3.
Appl Microbiol Biotechnol ; 101(17): 6829-6839, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28718056

RESUMO

In this study, a sequencing batch reactor (SBR), treating synthetic wastewater (COD/N = 5), was operated in two stages. During stage I, an aeration control strategy based on oxygen uptake rate (OUR) was applied, to accomplish nitrogen removal via nitrite >80%. In stage II, the development of aerobic granular sludge (AGS) was examined while two aeration control strategies (OUR and pH slope) maintained the nitrite pathway and optimized the simultaneous nitrification-denitrification (SND) performance. Stimulation of slow-growing organisms, (denitrifying) polyphosphate-accumulating organisms (D)PAO and (denitrifying) glycogen-accumulating organisms (D)GAO leads to full granulation (at day 200, SVI10 = 47.0 mL/g and SVI30 = 43.1 mL/g). The average biological nutrient removal efficiencies, for nitrogen and phosphorus, were 94.6 and 83.7%, respectively. Furthermore, the benefits of an increased dissolved oxygen concentration (1.0-2.0 mg O2/L) were shown as biomass concentrations increased with approximately 2 g/L, and specific ammonium removal rate and phosphorus uptake rate increased with 33 and 44%, respectively. It was shown that the combination of both aeration phase-length control strategies provided an innovative method to achieve SND via nitrite in AGS.


Assuntos
Desnitrificação , Nitrificação , Nitritos/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biodegradação Ambiental , Reatores Biológicos , Redes e Vias Metabólicas , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Esgotos/química , Águas Residuárias/química , Águas Residuárias/microbiologia
4.
Environ Microbiol ; 16(7): 2282-300, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24673852

RESUMO

Pseudomonas CMR12a is a biocontrol strain that produces phenazine antibiotics and as yet uncharacterized cyclic lipopeptides (CLPs). The CLPs of CMR12a were studied by chemical structure analysis and in silico analysis of the gene clusters encoding the non-ribosomal peptide synthetases responsible for CLP biosynthesis. CMR12a produces two different classes of CLPs: orfamides B, D and E, whereby the latter two represent new derivatives of the orfamide family, and sessilins A-C. The orfamides are made up of a 10 amino acid peptide coupled to a ß-hydroxydodecanoyl or ß-hydroxytetradecanoyl fatty acid moiety, and are related to orfamides produced by biocontrol strain Pseudomonas protegens Pf-5. The sessilins consist of an 18-amino acid peptide linked to a ß-hydroxyoctanoyl fatty acid and differ in one amino acid from tolaasins, toxins produced by the mushroom pathogen Pseudomonas tolaasii. CLP biosynthesis mutants were constructed and tested for biofilm formation and swarming motility. Orfamides appeared indispensable for swarming while sessilin mutants showed reduced biofilm formation, but enhanced swarming motility. The interplay between the two classes of CLPs fine tunes these processes. The presence of sessilins in wild type CMR12a interferes with swarming by hampering the release of orfamides and by co-precipitating orfamides to form a white line in agar.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/biossíntese , Peptídeo Sintases/genética , Peptídeos Cíclicos/biossíntese , Pseudomonas/genética , Ágar , Proteínas de Bactérias/química , Agentes de Controle Biológico , Depsipeptídeos/química , Lipopeptídeos/genética , Movimento , Família Multigênica , Mutação , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/genética , Fenazinas/metabolismo , Pseudomonas/metabolismo
5.
Food Chem (Oxf) ; 8: 100186, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38179151

RESUMO

Using high-throughput metagenomics on commercial microbial fermentation products, DNA from a new unauthorized genetically modified microorganism (GMM), namely the GM B. licheniformis strain producing alpha-amylase (GMM alpha-amylase2), was recently discovered and characterized. On this basis, a new qPCR method targeting an unnatural association of sequences specific to the GMM alpha-amylase2 strain was designed and developed in this study, allowing to strengthen the current GMM detection strategy. The performance of the newly developed qPCR method was assessed for its specificity and sensitivity to comply with the minimum performance requirements established by the European Network of GMO Laboratories for GMO analysis. Moreover, the transferability of the in house validated qPCR method was demonstrated. Finally, its applicability was confirmed by a pilot market surveillance of GMM contaminations conducted for the first time on 40 alpha-amylase food enzyme products labelled as containing alpha-amylase. This pilot market surveillance allowed also to highlight numerous contaminations with GMM alpha-amylase2, including frequent cross-contaminations with other GMM strains previously characterized. In addition, the presence of full-length AMR genes, raising health concerns, was also reported.

6.
Foods ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765984

RESUMO

Similar to genetically modified organisms (GMOs) produced by classical genetic engineering, gene-edited (GE) organisms and their derived food/feed products commercialized on the European Union market fall within the scope of European Union Directive 2001/18/EC. Consequently, their control in the food/feed chain by GMO enforcement laboratories is required by the competent authorities to guarantee food/feed safety and traceability (2003/1829/EC; 2003/1830/EC). However, their detection is potentially challenging at both the analytical and interpretation levels since this requires methodological approaches that can target and detect a specific single nucleotide variation (SNV) introduced into a GE organism. In this study, we propose a targeted high-throughput sequencing approach, including (i) a prior PCR-based enrichment step to amplify regions of interest, (ii) a sequencing step, and (iii) a data analysis methodology to identify SNVs of interest. To investigate if the performance of this targeted high-throughput sequencing approach is compatible with the performance criteria used in the GMO detection field, several samples containing different percentages of a GE rice line carrying a single adenosine insertion in OsMADS26 were prepared and analyzed. The SNV of interest in samples containing the GE rice line could successfully be detected, both at high and low percentages. No impact related to food processing or to the presence of other crop species was observed. The present proof-of-concept study has allowed us to deliver the first experimental-based evidence indicating that the proposed targeted high-throughput sequencing approach may constitute, in the future, a specific and sensitive tool to support the safety and traceability of the food/feed chain regarding GE plants carrying SNVs.

7.
Life (Basel) ; 12(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36556336

RESUMO

Genetically modified microorganisms (GMM) are frequently employed for manufacturing microbial fermentation products such as food enzymes or vitamins. Although the fermentation product is required to be pure, GMM contaminations have repeatedly been reported in numerous commercial microbial fermentation produce types, leading to several rapid alerts at the European level. The aim of this study was to investigate the added value of shotgun metagenomic high-throughput sequencing to confirm and extend the results of classical analysis methods for the genomic characterization of unauthorized GMM. By combining short- and long-read metagenomic sequencing, two transgenic constructs were characterized, with insertions of alpha-amylase genes originating from B. amyloliquefaciens and B. licheniformis, respectively, and a transgenic construct with a protease gene insertion originating from B. velezensis, which were all present in all four investigated samples. Additionally, the samples were contaminated with up to three unculturable Bacillus strains, carrying genetic modifications that may hamper their ability to sporulate. Moreover, several samples contained viable Bacillus strains. Altogether these contaminations constitute a considerable load of antimicrobial resistance genes, that may represent a potential public health risk. In conclusion, our study showcases the added value of metagenomics to investigate the quality and safety of complex commercial microbial fermentation products.

8.
Foods ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359961

RESUMO

In this proof-of-concept study on food contaminated with norovirus, we investigated the feasibility of metagenomics as a new method to obtain the whole genome sequence of the virus and perform strain level characterization but also relate to human cases in order to resolve foodborne outbreaks. We tested several preparation methods to determine if a more open sequencing approach, i.e., shotgun metagenomics, or a more targeted approach, including hybrid capture, was the most appropriate. The genetic material was sequenced using Oxford Nanopore technologies with or without adaptive sampling, and the data were analyzed with an in-house bioinformatics workflow. We showed that a viral genome sequence could be obtained for phylogenetic analysis with shotgun metagenomics if the contamination load was sufficiently high or after hybrid capture for lower contamination. Relatedness to human cases goes well beyond the results obtained with the current qPCR methods. This workflow was also tested on a publicly available dataset of food spiked with norovirus and hepatitis A virus. This allowed us to prove that we could detect even fewer genome copies and two viruses present in a sample using shotgun metagenomics. We share the lessons learnt on the satisfactory and unsatisfactory results in an attempt to advance the field.

9.
Phytopathology ; 101(8): 996-1004, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21405991

RESUMO

Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two different anastomosis groups (AGs) of Rhizoctonia solani, the intermediately aggressive AG 2-2 and the highly aggressive AG 4 HGI, were included in growth-chamber experiments with bean plants. The wild-type strain CMR12a dramatically reduced disease severity caused by both R. solani AGs. A CLP-deficient and a phenazine-deficient mutant of CMR12a still protected bean plants, albeit to a lesser extent compared with the wild type. Two mutants deficient in both phenazine and CLP production completely lost their biocontrol activity. Disease-suppressive capacity of CMR12a decreased after washing bacteria before application to soil and thereby removing metabolites produced during growth on plate. In addition, microscopic observations revealed pronounced branching of hyphal tips of both R. solani AGs in the presence of CMR12a. More branched and denser mycelium was also observed for the phenazine-deficient mutant; however, neither the CLP-deficient mutant nor the mutants deficient in both CLPs and phenazines influenced hyphal growth. Together, results demonstrate the involvement of phenazines and CLPs during Pseudomonas CMR12a-mediated biocontrol of Rhizoctonia root rot of bean.


Assuntos
Fabaceae/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Pseudomonas/classificação , Rhizoctonia/fisiologia , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Fenazinas/metabolismo , Fenazinas/farmacologia , Raízes de Plantas/microbiologia , Pseudomonas/metabolismo
10.
Foods ; 10(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34828918

RESUMO

Despite their presence being unauthorized on the European market, contaminations with genetically modified (GM) microorganisms have repeatedly been reported in diverse commercial microbial fermentation produce types. Several of these contaminations are related to a GM Bacillus velezensis used to synthesize a food enzyme protease, for which genomic characterization remains currently incomplete, and it is unknown whether these contaminations have a common origin. In this study, GM B. velezensis isolates from multiple food enzyme products were characterized by short- and long-read whole-genome sequencing (WGS), demonstrating that they harbor a free recombinant pUB110-derived plasmid carrying antimicrobial resistance genes. Additionally, single-nucleotide polymorphism (SNP) and whole-genome based comparative analyses showed that the isolates likely originate from the same parental GM strain. This study highlights the added value of a hybrid WGS approach for accurate genomic characterization of GMM (e.g., genomic location of the transgenic construct), and of SNP-based phylogenomic analysis for source-tracking of GMM.

11.
Bioresour Technol ; 280: 151-157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30771569

RESUMO

Treatment of rapidly varying wastewaters in anaerobic/aerobic aerobic granular sludge (AGS) systems remains problematic. This study investigated AGS formation and the impact of varying COD and phosphorus concentrations on an enhanced biological phosphorus removal (EBPR) AGS SBR with a conductivity based anaerobic and OUR based aerobic dynamically controlled step. Phase 1 investigated the development of AGS. Phase 2 examined the flexibility of the dynamic control strategy and AGS efficiency while rapidly altering the influent composition. AGS was formed successfully in phase 1: the DV50 increased to 285 µm, and the SVI5 and SVI30 decreased to 51 and 40 ml/g respectively. In phase 2 the effluent COD and PO4-P concentration remained low at respectively 58 ±â€¯27 mg/L and 0.53 ±â€¯0.77 mg/L. With an anaerobic DOC uptake efficiency of 98.4 ±â€¯0.9%.


Assuntos
Fósforo/metabolismo , Esgotos , Reatores Biológicos
12.
Bioresour Technol ; 226: 211-219, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28002781

RESUMO

In this study nitrogen removal via nitrite >80% was achieved after approximately 80days in a sequencing batch reactor (SBR) treating pre-treated industrial wastewater originating from the potato industry. Thereafter, SBR performance was investigated during the formation of aerobic nitrite granules (ANG). The first granules appeared after 26days leading to full granulation after 64days. ANG showed excellent settling properties, as the Sludge Volume Index (SVI) went down to 16mL/g and a SVI10/SVI30=1 was obtained. qPCR analysis showed that slow growing organisms, especially polyphosphate accumulating organisms (PAO) were stimulated by an anaerobic feeding strategy. The average nitrogen removal was 95.3% over the entire operational period, and it mainly followed the "nitrite-route". Moreover, with ANG also phosphorus removal efficiencies up to 65.7% could be achieved. However, it has to be mentioned that nitrous oxide was an important denitrification product, which implies some environmental concerns.


Assuntos
Reatores Biológicos , Nitritos/análise , Esgotos/análise , Solanum tuberosum , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Agricultura , Desnitrificação , Desenho de Equipamento , Nitrogênio/análise , Nitrogênio/química , Óxido Nitroso/análise , Óxido Nitroso/química , Fósforo/química
13.
Bioresour Technol ; 238: 559-567, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28477518

RESUMO

In this study, petrochemical wastewater from the port of Antwerp was used for the development of aerobic granular sludge. Two different reactor setups were used, (1) a completely aerated sequencing batch reactor (SBRae) with a feast/famine regime and (2) a sequencing batch reactor operated with an anaerobic feast/aerobic famine strategy (SBRan). The seed sludge showed poor settling characteristics with a sludge volume index (SVI) of 285mL.gMLSS-1 and a median particle size by volume of 86.0µm±1.9µm. In both reactors, granulation was reached after 30days with a SVI of 71mL.gMLSS-1 and median granule size of 264.7µm in SBRan and a SVI of 56mL.gMLSS-1 and median granule size of 307.4µm in SBRae. The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal was similar in both reactors and above 95%. The anaerobic DOC uptake increased from 0.13% to 43.2% in 60days in SBRan.


Assuntos
Reatores Biológicos , Esgotos , Águas Residuárias , Aerobiose , Oxigênio/química , Eliminação de Resíduos Líquidos
14.
Environ Microbiol Rep ; 2(3): 359-72, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23766108

RESUMO

Production of biosurfactants is a common feature in bacteria, and in particular in plant-associated species. These bacteria include many plant beneficial and plant pathogenic Pseudomonas spp., which produce primarily cyclic lipopeptide and rhamnolipid type biosurfactants. Pseudomonas-derived biosurfactants are involved in many important bacterial functions. By modifying surface properties, biosurfactants can influence common traits such as surface motility, biofilm formation and colonization. Biosurfactants can alter the bio-availability of exogenous compounds, such as nutrients, to promote their uptake, and of endogenous metabolites, including phenazine antibiotics, resulting in an enhanced biological activity. Antibiotic activity of biosurfactants towards microbes could play a role in intraspecific competition, self-defence and pathogenesis. In addition, bacterial surfactants can affect plants in different ways, either protecting them from disease, or acting as a toxin in a plant-pathogen interaction. Biosurfactants are involved in the biocontrol activity of an increasing number of Pseudomonas strains. Consequently, further insight into the roles and activities of surfactants produced by bacteria could provide means to optimize the use of biological control as an alternative crop protection strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA