Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res Lett ; 19(3): 034036, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38419692

RESUMO

Road traffic has become the leading source of air pollution in fast-growing sub-Saharan African cities. Yet, there is a dearth of robust city-wide data for understanding space-time variations and inequalities in combustion related emissions and exposures. We combined nitrogen dioxide (NO2) and nitric oxide (NO) measurement data from 134 locations in the Greater Accra Metropolitan Area (GAMA), with geographical, meteorological, and population factors in spatio-temporal mixed effects models to predict NO2 and NO concentrations at fine spatial (50 m) and temporal (weekly) resolution over the entire GAMA. Model performance was evaluated with 10-fold cross-validation (CV), and predictions were summarized as annual and seasonal (dusty [Harmattan] and rainy [non-Harmattan]) mean concentrations. The predictions were used to examine population distributions of, and socioeconomic inequalities in, exposure at the census enumeration area (EA) level. The models explained 88% and 79% of the spatiotemporal variability in NO2 and NO concentrations, respectively. The mean predicted annual, non-Harmattan and Harmattan NO2 levels were 37 (range: 1-189), 28 (range: 1-170) and 50 (range: 1-195) µg m-3, respectively. Unlike NO2, NO concentrations were highest in the non-Harmattan season (41 [range: 31-521] µg m-3). Road traffic was the dominant factor for both pollutants, but NO2 had higher spatial heterogeneity than NO. For both pollutants, the levels were substantially higher in the city core, where the entire population (100%) was exposed to annual NO2 levels exceeding the World Health Organization (WHO) guideline of 10 µg m-3. Significant disparities in NO2 concentrations existed across socioeconomic gradients, with residents in the poorest communities exposed to levels about 15 µg m-3 higher compared with the wealthiest (p < 0.001). The results showed the important role of road traffic emissions in air pollution concentrations in the GAMA, which has major implications for the health of the city's poorest residents. These data could support climate and health impact assessments as well as policy evaluations in the city.

2.
Sci Total Environ ; 903: 166168, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586538

RESUMO

Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA