Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672363

RESUMO

The objective of this study was to evaluate the effects of increasing levels of the M-E complex (xylanase, glucanase, cellulase, and invertase) Optimax E® on the performance of growing lambs, their digestibility, and their rumen microbiota, and to estimate NEm, NEg, and ruminal methane levels. Forty lambs (Katahdin x Dorset; 22.91 ± 4.16 kg) were randomly assigned to dietary concentrations of ME (0, 0.2, 0.4, and 0.8% DM) and fed individually for 77 days. Increasing M-E improved feed conversion (p < 0.05) as well as NEm and NEg (p < 0.05), which were associated with increased in vivo DM and NDF digestion (linear and quadratic p < 0.01). Few microbial families showed abundancy changes (Erysipelotrichaceae, Christensenellaceae, Lentisphaerae, and Clostridial Family XIII); however, the dominant phylum Bacteroidetes was linearly reduced, while Firmicutes increased (p < 0.01), resulting in a greater Firmicutes-to-Bacteroidetes ratio. Total Entodinium showed a quadratic response (p < 0.10), increasing its abundancy as the enzyme dose was augmented. The daily emission intensity of methane (per kg of DMI or AGD) was reduced linearly (p < 0.01). In conclusion, adding the M-E complex Optimax E® to growing lambs' diets improves their productive performance by acting synergistically with the rumen microbiota, modifying the Firmicutes-to-Bacteroidetes ratio toward more efficient fermentation, and shows the potential to reduce the intensity of greenhouse gas emissions from lambs.

2.
Front Vet Sci ; 7: 623710, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575280

RESUMO

A polyherbal feed mixture containing (Achyrantes aspera, Trachyspermum ammi, Citrullus colocynthis, Andrographis paniculata, and Azadirachta indica) was evaluated in growing calves through blood chemistry, blood biometry, and gene expression during the pre-ruminant to weaning period. Forty Holstein calves (initial BW 45.6 ± 3.2 kg; 22.8 ± 0.9 days post birth) from a dairy farm were randomly assigned to the following treatments: 0, 3, 4, and 5 g/d of a polyherbal mixture, dosed in colloid gels with gelatin. Calves were housed in individual outdoor boxes with ad libitum access to a 21.5% CP calf starter and water and fed individually with a mixture of milk and a non-medicated milk replacer (22% CP). Blood samples were collected on day 59 for blood chemistry, blood biometry, and gene expression analysis in leukocyte through microarray assays. Immunoglobulins were quantified by enzyme-linked immunosorbent assay. The animals treated with the polyherbal mixture showed a quadratic effect on final body weight, daily weight gain, final hip height, and final thoracic girth. The best performance results were obtained with a treatment dose of 4 g/d. The serum IgG increased linearly with the treatment doses. Gene set enrichment analysis of upregulated genes revealed that the three biological processes with higher fold change were tight junction, mucin type O-Glycan biosynthesis, and intestinal immune network for IgA production. Also, these upregulated genes influenced arachidonic acid metabolism, and pantothenate and CoA biosynthesis. Gene ontology enrichment analysis indicated that the pathways enriched were PELP1 estrogen receptor interacting protein pathways, nuclear receptors in lipid metabolism and toxicity, tight junction, ECM-receptor interaction, thyroid hormone signaling pathways, vascular smooth muscle contraction, ribosome function, glutamatergic synapse pathway, focal adhesion, Hippo, calcium, and MAPK signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA