Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 58(7): 3705-3713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37635264

RESUMO

As we speak, corollary discharge mechanisms suppress the auditory conscious perception of the self-generated voice in healthy subjects. This suppression has been associated with the attenuation of the auditory N1 component. To analyse this corollary discharge phenomenon (agency and ownership), we registered the event-related potentials of 42 healthy subjects. The N1 and P2 components were elicited by spoken vowels (talk condition; agency), by played-back vowels recorded with their own voice (listen-self condition; ownership) and by played-back vowels recorded with an external voice (listen-other condition). The N1 amplitude elicited by the talk condition was smaller compared with the listen-self and listen-other conditions. There were no amplitude differences in N1 between listen-self and listen-other conditions. The P2 component did not show differences between conditions. Additionally, a peak latency analysis of N1 and P2 components between the three conditions showed no differences. These findings corroborate previous results showing that the corollary discharge mechanisms dampen sensory responses to self-generated speech (agency experience) and provide new neurophysiological evidence about the similarities in the processing of played-back vowels with our own voice (ownership experience) and with an external voice.

2.
Eur Arch Psychiatry Clin Neurosci ; 273(6): 1379-1386, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36416961

RESUMO

Aiming at discerning potential biotypes within the psychotic syndrome, we have recently reported the possible existence of two clusters or biotypes across schizophrenia and bipolar disorder characterized by their cognitive performance using the Brief Assessment of Cognition in Schizophrenia (BACS) instrument and validated with independent biological and clinical indexes (Fernández-Linsenbarth et al. in Schizophr Res 229:102-111, 2021). In this previous work, the group with larger cognitive deficits (N = 93, including 69 chronic schizophrenia, 17 first episodes (FE) of schizophrenia and 7 bipolar disorder patients) showed smaller thalamus and hippocampus volume and hyper-synchronic electroencephalogram than the group with milder deficits (N = 105, including 58 chronic schizophrenia, 25 FE and 22 bipolar disorder patients). We predicted that if these biotypes indeed corresponded to different cognitive and biological substrates, their adaptation to real life would be different. To this end, in the present work we have followed up the patients' population included in that work at 1st and 3rd years after the date of inclusion in the 2021 study and we report on the statistical comparisons of each clinical and real-life outcomes between them. The first cluster, with larger cognitive deficits and more severe biological alterations, showed during that period a decreased capacity for job tenure (1st and 3rd years), more admissions to a psychiatric ward (1st year) and a higher likelihood for quitting psychiatric follow-up (3rd year). Patients in the second cluster, with moderate cognitive deficits, were less compliant with prescribed treatment at the 3rd year. The differences in real-life outcomes may give additional external validity to that yielded by biological measurements to the described biotypes based on neurocognition.


Assuntos
Transtorno Bipolar , Transtornos Cognitivos , Transtornos Psicóticos , Esquizofrenia , Humanos , Testes Neuropsicológicos , Transtornos Psicóticos/complicações , Transtornos Psicóticos/psicologia , Esquizofrenia/complicações , Transtorno Bipolar/complicações , Transtorno Bipolar/psicologia , Transtornos Cognitivos/psicologia
3.
J Neurosci ; 38(46): 9870-9882, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30282727

RESUMO

Calretinin (CR)-expressing periglomerular (PG) cells are the most abundant interneurons in the glomerular layer of the olfactory bulb. They are predominately generated postnatally from the septal and dorsal subventricular zones that continue producing them well into adulthood. Yet, little is known about their properties and functions. Using transgenic approaches and patch-clamp recording in mice of both sexes we show that CR(+) PG cells of both septal and dorsal origin have homogeneous morphological and electrophysiological properties. However, unlike other PG cells, these axonless neurons express a surprisingly small repertoire of voltage-activated channels and do not fire or fire at most a single and often small action potential. Moreover, they are not innervated by olfactory sensory neurons and receive little synaptic inputs from mitral or tufted cells at excitatory synapses where NMDA receptors predominate. These membrane and synaptic properties, that resemble those of newborn immature neurons not yet integrated in the network, persist over time and limit the recruitment of CR(+) PG cells by afferent inputs that strongly drive local network activity. Together, our results show that postnatally generated CR(+) PG cells continuously supply a large pool of neurons with unconventional properties. These data also question the contribution of CR(+) PG cells in olfactory bulb computation.SIGNIFICANCE STATEMENT Calretinin-expressing PG cells are by far the most abundant interneurons in the glomerular layer of the olfactory bulb. They are continuously produced during postnatal life, including adulthood, from neural stem cells located in the subventricular zones. Surprisingly, unlike other postnatally generated newborn neurons that quickly integrate into preexisting olfactory bulb networks, calretinin-expressing PG cells retain immature properties that limit their recruitment in local network activity for weeks, if not months, as if they would never fully mature. The function of this so far unsuspected pool of latent neurons is still unknown.


Assuntos
Interneurônios/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Neurogênese/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Calbindina 2/biossíntese , Calbindina 2/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/citologia , Bulbo Olfatório/citologia
4.
J Physiol ; 597(9): 2547-2563, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30920662

RESUMO

KEY POINTS: Basal forebrain long-range projections to the olfactory bulb are important for olfactory sensitivity and odour discrimination. Using optogenetics, it was confirmed that basal forebrain afferents mediate IPSCs on granule and deep short axon cells. It was also shown that they selectively innervate specific subtypes of periglomerular (PG) cells. Three different subtypes of type 2 PG cells receive GABAergic IPSCs from the basal forebrain but not from other PG cells. Type 1 PG cells, in contrast, do not receive inputs from the basal forebrain but do receive inhibition from other PG cells. These results shed new light on the complexity and specificity of glomerular inhibitory circuits, as well as on their modulation by the basal forebrain. ABSTRACT: Olfactory bulb circuits are dominated by multiple inhibitory pathways that finely tune the activity of mitral and tufted cells, the principal neurons, and regulate odour discrimination. Granule cells mediate interglomerular lateral inhibition between mitral and tufted cells' lateral dendrites whereas diverse subtypes of periglomerular (PG) cells mediate intraglomerular lateral inhibition between their apical dendrites. Deep short axon cells form broad intrabulbar inhibitory circuits that regulate both populations of interneurons. Little is known about the extrabulbar GABAergic circuits that control the activity of these various interneurons. We examined this question using patch-clamp recordings and optogenetics in olfactory bulb slices from transgenic mice. We showed that axonal projections emanating from diverse basal forebrain GABAergic neurons densely project in all layers of the olfactory bulb. These long-range GABAergic projections provide a prominent synaptic input on granule and short axon cells in deep layers as well as on selective subtypes of PG cells. Specifically, three different subclasses of type 2 PG cells receive robust and target-specific basal forebrain inputs but have little local interactions with other PG cells. In contrast, type 1 PG cells are not innervated by basal forebrain fibres but do interact with other PG cells. Thus, attention-regulated basal forebrain inputs regulate inhibition in all layers of the olfactory bulb with a previously overlooked synaptic complexity that further defines interneuron subclasses.


Assuntos
Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores , Interneurônios/fisiologia , Bulbo Olfatório/citologia , Prosencéfalo/citologia , Animais , Axônios/metabolismo , Axônios/fisiologia , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/fisiologia , Prosencéfalo/fisiologia
5.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 21-34, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28851104

RESUMO

This large multi-center study investigates the relationships between genetic risk for schizophrenia and bipolar disorder, and multi-modal endophenotypes for psychosis. The sample included 4,242 individuals; 1,087 patients with psychosis, 822 unaffected first-degree relatives of patients, and 2,333 controls. Endophenotypes included the P300 event-related potential (N = 515), lateral ventricular volume (N = 798), and the cognitive measures block design (N = 3,089), digit span (N = 1,437), and the Ray Auditory Verbal Learning Task (N = 2,406). Data were collected across 11 sites in Europe and Australia; all genotyping and genetic analyses were done at the same laboratory in the United Kingdom. We calculated polygenic risk scores for schizophrenia and bipolar disorder separately, and used linear regression to test whether polygenic scores influenced the endophenotypes. Results showed that higher polygenic scores for schizophrenia were associated with poorer performance on the block design task and explained 0.2% (p = 0.009) of the variance. Associations in the same direction were found for bipolar disorder scores, but this was not statistically significant at the 1% level (p = 0.02). The schizophrenia score explained 0.4% of variance in lateral ventricular volumes, the largest across all phenotypes examined, although this was not significant (p = 0.063). None of the remaining associations reached significance after correction for multiple testing (with alpha at 1%). These results indicate that common genetic variants associated with schizophrenia predict performance in spatial visualization, providing additional evidence that this measure is an endophenotype for the disorder with shared genetic risk variants. The use of endophenotypes such as this will help to characterize the effects of common genetic variation in psychosis.


Assuntos
Transtorno Bipolar/genética , Transtornos Psicóticos/genética , Esquizofrenia/genética , Adulto , Austrália , Encéfalo/fisiologia , Cognição/fisiologia , Endofenótipos/sangue , Europa (Continente) , Potenciais Evocados P300 , Família/psicologia , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Herança Multifatorial/genética , Testes Neuropsicológicos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , População Branca/genética
6.
Hum Brain Mapp ; 38(6): 3262-3276, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28345275

RESUMO

The "dysconnection hypothesis" of psychosis suggests that a disruption of functional integration underlies cognitive deficits and clinical symptoms. Impairments in the P300 potential are well documented in psychosis. Intrinsic (self-)connectivity in a frontoparietal cortical hierarchy during a P300 experiment was investigated. Dynamic Causal Modeling was used to estimate how evoked activity results from the dynamics of coupled neural populations and how neural coupling changes with the experimental factors. Twenty-four patients with psychotic disorder, twenty-four unaffected relatives, and twenty-five controls underwent EEG recordings during an auditory oddball paradigm. Sixteen frontoparietal network models (including primary auditory, superior parietal, and superior frontal sources) were analyzed and an optimal model of neural coupling, explaining diagnosis and genetic risk effects, as well as their interactions with task condition were identified. The winning model included changes in connectivity at all three hierarchical levels. Patients showed decreased self-inhibition-that is, increased cortical excitability-in left superior frontal gyrus across task conditions, compared with unaffected participants. Relatives had similar increases in excitability in left superior frontal and right superior parietal sources, and a reversal of the normal synaptic gain changes in response to targets relative to standard tones. It was confirmed that both subjects with psychotic disorder and their relatives show a context-independent loss of synaptic gain control at the highest hierarchy levels. The relatives also showed abnormal gain modulation responses to task-relevant stimuli. These may be caused by NMDA-receptor and/or GABAergic pathologies that change the excitability of superficial pyramidal cells and may be a potential biological marker for psychosis. Hum Brain Mapp 38:3262-3276, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Potenciais Evocados P300/fisiologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Transtornos Psicóticos/patologia , Transtornos Psicóticos/fisiopatologia , Adolescente , Adulto , Idoso , Teorema de Bayes , Eletroencefalografia , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Rede Nervosa/diagnóstico por imagem , Dinâmica não Linear , Córtex Pré-Frontal/diagnóstico por imagem , Escalas de Graduação Psiquiátrica , Adulto Jovem
7.
J Neurosci ; 35(10): 4319-31, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762678

RESUMO

The activity of mitral and tufted cells, the principal neurons of the olfactory bulb, is modulated by several classes of interneurons. Among them, diverse periglomerular (PG) cell types interact with the apical dendrites of mitral and tufted cells inside glomeruli at the first stage of olfactory processing. We used paired recording in olfactory bulb slices and two-photon targeted patch-clamp recording in vivo to characterize the properties and connections of a genetically identified population of PG cells expressing enhanced yellow fluorescent protein (EYFP) under the control of the Kv3.1 potassium channel promoter. Kv3.1-EYFP(+) PG cells are axonless and monoglomerular neurons that constitute ∼30% of all PG cells and include calbindin-expressing neurons. They respond to an olfactory nerve stimulation with a short barrage of excitatory inputs mediated by mitral, tufted, and external tufted cells, and, in turn, they indiscriminately release GABA onto principal neurons. They are activated by even the weakest olfactory nerve input or by the discharge of a single principal neuron in slices and at each respiration cycle in anesthetized mice. They participate in a fast-onset intraglomerular lateral inhibition between principal neurons from the same glomerulus, a circuit that reduces the firing rate and promotes spike timing variability in mitral cells. Recordings in other PG cell subtypes suggest that this pathway predominates in generating glomerular inhibition. Intraglomerular lateral inhibition may play a key role in olfactory processing by reducing the similarity of principal cells discharge in response to the same incoming input.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Animais , Calbindina 1/metabolismo , Creatina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Hum Brain Mapp ; 37(1): 351-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26503033

RESUMO

The mismatch negativity (MMN) evoked potential, a preattentive brain response to a discriminable change in auditory stimulation, is significantly reduced in psychosis. Glutamatergic theories of psychosis propose that hypofunction of NMDA receptors (on pyramidal cells and inhibitory interneurons) causes a loss of synaptic gain control. We measured changes in neuronal effective connectivity underlying the MMN using dynamic causal modeling (DCM), where the gain (excitability) of superficial pyramidal cells is explicitly parameterised. EEG data were obtained during a MMN task--for 24 patients with psychosis, 25 of their first-degree unaffected relatives, and 35 controls--and DCM was used to estimate the excitability (modeled as self-inhibition) of (source-specific) superficial pyramidal populations. The MMN sources, based on previous research, included primary and secondary auditory cortices, and the right inferior frontal gyrus. Both patients with psychosis and unaffected relatives (to a lesser degree) showed increased excitability in right inferior frontal gyrus across task conditions, compared to controls. Furthermore, in the same region, both patients and their relatives showed a reversal of the normal response to deviant stimuli; that is, a decrease in excitability in comparison to standard conditions. Our results suggest that psychosis and genetic risk for the illness are associated with both context-dependent (condition-specific) and context-independent abnormalities of the excitability of superficial pyramidal cell populations in the MMN paradigm. These abnormalities could relate to NMDA receptor hypofunction on both pyramidal cells and inhibitory interneurons, and appear to be linked to the genetic aetiology of the illness, thereby constituting potential endophenotypes for psychosis.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Variação Contingente Negativa/fisiologia , Potenciais Evocados Auditivos/fisiologia , Família , Córtex Pré-Frontal/fisiopatologia , Transtornos Psicóticos/complicações , Estimulação Acústica , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Dinâmica não Linear , Córtex Pré-Frontal/patologia , Adulto Jovem
9.
Eur Arch Psychiatry Clin Neurosci ; 265(6): 525-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25164969

RESUMO

The analysis of the interaction between novelty and relevance may be of interest to test the aberrant salience hypothesis of schizophrenia (SCH). In comparison with other neuroimaging techniques, such as functional magnetic resonance imaging, electroencephalography (EEG) provides high temporal resolution. Therefore, EEG is useful to analyze transient dynamics in neural activity, even in the range of milliseconds. In this study, EEG activity from 31 patients with SCH and 38 controls was analyzed using Shannon spectral entropy (SE) and median frequency (MF). The aim of the study was to quantify differences between distractor (i.e., novelty) and target (i.e., novelty and relevance) tones in an auditory oddball paradigm. Healthy controls displayed a larger SE decrease in response to target stimulus than in response to distractor tones. SE decrease was accompanied by a significant and widespread reduction of MF (i.e., a significant slowing of EEG activity). In comparison with controls, patients showed a significant reduction of changes in SE in response to both target and distractor tones. These differences were also observed in patients that only received a minimal treatment prior to EEG recording. Furthermore, significant changes in SE were inversely correlated to positive and total symptoms severity for SCH patients. Our findings support the notion that SCH is associated with a reduced response to both novelty and relevance during an auditory P300 task.


Assuntos
Eletroencefalografia/métodos , Entropia , Potenciais Evocados P300/fisiologia , Desempenho Psicomotor/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Percepção Auditiva/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Glia ; 62(3): 399-410, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357027

RESUMO

Minocycline, a tetracycline derivative, is known to exert neuroprotective effects unrelated to its antimicrobial action. In particular, minocycline prevents microglial activation in pathological conditions and consequently reduces the production of proinflammatory factors contributing to the propagation of diseases. Accumulative evidence indicates that microglial cells contribute to the maturation of neuronal and synaptic networks during the normal development of the central nervous system (CNS) and that perinatal inflammation is a known risk factor for brain lesions. Although minocycline has been used to infer microglia functions during development, mechanisms by which this tetracycline derivative affect the immature CNS have not been analyzed in detail. In this study, we demonstrate that minocycline administration during the first postnatal week of development has paradoxical effects on microglia phenotype and on neuronal survival in the mouse somatosensory cortex. Using a combination of immunohistochemistry and electrophysiology, we show that intraperitoneal injections of minocycline between postnatal days 6 and 8 affect distribution, morphology, and functional properties of microglia cells of the whisker-related barrel cortex, leading to the development of a phenotype resembling that of microglia activated in pathological conditions. Minocyline also induced a massive cell death that developed faster than changes in microglia phenotype, suggesting that the latter is a consequence of the former. Finally, cell death and microglial activation were not observed when minocycline treatment was postponed by only 2 days (i.e., between postnatal days 8 and 10). These observations call into question the use of tetracycline derivatives during CNS development to study microglia or to reduce perinatal inflammation.


Assuntos
Minociclina/farmacologia , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Galectina 3/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Injeções Intraperitoneais , Antígeno Ki-67/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Neuroglia/fisiologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Substância Branca/citologia , Substância Branca/efeitos dos fármacos
12.
Neuropsychobiology ; 69(2): 120-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732388

RESUMO

BACKGROUND: Gamma oscillations are essential for functional neural assembly formation underlying higher cerebral functions. Previous studies concerning gamma band power in schizophrenia have yielded diverse results. METHODS: In this study, we assessed gamma band power in minimally treated patients with schizophrenia, their first-degree relatives and healthy controls during an oddball paradigm performance, as well as the relation between gamma power and cognitive performance. RESULTS: We found a higher gamma power in the patient group than in the healthy controls at the P3, P4, Fz, Pz and T5 sites. Compared with their relatives, gamma power in the patients was only marginally higher over P3 and P4. We found a nearly significant inverse association between gamma power at F4 and Tower of London performance in the patients, as well as a significant inverse association between gamma power at T5 and verbal memory and working memory scores in the relatives. CONCLUSION: These results support higher total gamma power in association with schizophrenia and its inverse association with cognitive performance in patients and their first-degree relatives.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Família , Ritmo Gama , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto , Antipsicóticos/uso terapêutico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Eletroencefalografia , Potenciais Evocados/efeitos dos fármacos , Feminino , Ritmo Gama/efeitos dos fármacos , Haloperidol/uso terapêutico , Humanos , Masculino , Memória , Memória de Curto Prazo , Pessoa de Meia-Idade , Testes Neuropsicológicos , Esquizofrenia/tratamento farmacológico , Percepção da Fala , Análise e Desempenho de Tarefas
13.
Eur Arch Psychiatry Clin Neurosci ; 264(6): 533-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24496581

RESUMO

Spectral entropy (SE), also known as Shannon entropy, is a useful parameter for quantifying the global regularity of the electroencephalographic (EEG) signal. Hence, it is of interest in the assessment of the electrophysiological correlates of cognitive processing in schizophrenia. However, to date, SE has been barely used in studies comparing resting EEG recordings between patients and controls. In this work, we compared SE between resting baseline [-250 0] ms and active task [150 550] ms windows of a P300 task in 31 patients with schizophrenia and 38 controls. Moreover, we also calculated the median frequency (MF) and relative power in each frequency band for these windows to assess the correlates of the possible SE differences. Controls showed a significant (p < 0.0029) SE decrease (i.e., meaning higher signal regularity) from baseline to the active task window at parietal and central electrode sites. This SE decrease from baseline to active conditions was significantly lower in patients. In controls, this SE decrease was accompanied by a statistically significant decrease in MF (i.e., a significant slowing of the EEG activity), not observed in patients. In this latter group, the difference in SE between resting baseline and active task windows was inversely correlated to positive and total symptoms scores, as measured with the positive and negative symptoms scale. Our data support the relevance of SE in the study of cerebral processing in schizophrenia.


Assuntos
Mapeamento Encefálico , Entropia , Potenciais Evocados P300/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Análise Espectral
14.
Psychiatry Clin Neurosci ; 68(3): 206-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24313632

RESUMO

AIMS: The aim of this study was to assess the relation between cognition, gray matter (GM) volumes and gamma noise power (amount of background oscillatory activity in the gamma band) in schizophrenia. METHODS: We explored the relation between cognitive performance and regional GM volumes using voxel-based morphometry (VBM), in order to discover if the association between gamma noise power (an electroencephalography measurement of background activity in the gamma band) and cognition is observed through structural deficits related to the disease. Noise power, magnetic resonance imaging and cognitive assessments were obtained in 17 drug-free paranoid patients with schizophrenia and 13 healthy controls. RESULTS: In comparison with controls, patients showed GM deficits at posterior cingulate (bilateral),left inferior parietal (supramarginal gyrus) and left inferior dorsolateral prefrontal regions. Patients exhibited a direct association between performance in working memory and right temporal (superior and inferior gyri) GM densities. They also displayed a negative association between right anterior cerebellum volume and gamma noise power at the frontal midline (Fz) site. CONCLUSION: A structural deficit in the cerebellum may be involved in gamma activity disorganization in schizophrenia. Temporal structural deficits may relate to cognitive dysfunction in this illness.


Assuntos
Encéfalo/patologia , Transtornos Cognitivos/patologia , Potenciais Evocados/fisiologia , Ritmo Gama/fisiologia , Esquizofrenia/patologia , Adulto , Encéfalo/fisiopatologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tamanho do Órgão , Esquizofrenia/complicações , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto Jovem
15.
Ann Gen Psychiatry ; 13: 18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24976857

RESUMO

BACKGROUND: Neuregulins are a family of signalling proteins that orchestrate a broad range of cellular responses. Four genes encoding Neuregulins 1-4 have been identified so far in vertebrates. Among them, Neuregulin 1 and Neuregulin 3 have been reported to contribute to an increased risk for developing schizophrenia. We hypothesized that three specific variants of these genes (rs6994992 and rs3924999 for Neuregulin 1 and rs10748842 for Neuregulin 3) that have been related to this illness may modify information processing capacity in the cortex, which would be reflected in electrophysiological parameters (P3b amplitude or gamma noise power) and/or cognitive performance. METHODS: We obtained DNA from 31 patients with schizophrenia and 23 healthy controls and analyzed NRG1 rs6994992, NRG1 rs3924999 and NRG3 rs10748842 promoter polymorphisms by allelic discrimination with real-time polymerase chain reaction (PCR). We compared cognitive outcome, P300 amplitude parameters and an electroencephalographic measure of noise power in the gamma band between the groups dichotomized according to genotype. RESULTS: Contrary to our hypothesis, we could not detect any significant influence of variation in Neuregulin 1/Neuregulin 3 polymorphisms on cognitive performance or electrophysiological parameters of patients with schizophrenia. CONCLUSIONS: Despite our findings, we cannot discard that other genetic variants and, more likely, interactions between those variants and with genetic variation related to different pathways may still influence cerebral processing in schizophrenia.

16.
Nat Neurosci ; 27(6): 1137-1147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38755272

RESUMO

In the perception of color, wavelengths of light reflected off objects are transformed into the derived quantities of brightness, saturation and hue. Neurons responding selectively to hue have been reported in primate cortex, but it is unknown how their narrow tuning in color space is produced by upstream circuit mechanisms. We report the discovery of neurons in the Drosophila optic lobe with hue-selective properties, which enables circuit-level analysis of color processing. From our analysis of an electron microscopy volume of a whole Drosophila brain, we construct a connectomics-constrained circuit model that accounts for this hue selectivity. Our model predicts that recurrent connections in the circuit are critical for generating hue selectivity. Experiments using genetic manipulations to perturb recurrence in adult flies confirm this prediction. Our findings reveal a circuit basis for hue selectivity in color vision.


Assuntos
Drosophila , Animais , Percepção de Cores/fisiologia , Vias Visuais/fisiologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Estimulação Luminosa/métodos , Visão de Cores/fisiologia , Conectoma , Rede Nervosa/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38036032

RESUMO

BACKGROUND: The study of the cortical functional network properties in schizophrenia (SZ) may benefit from the use of graph theory parameters applied to high-density electroencephalography (EEG). Connectivity Strength (CS) assesses global synchrony of the network, and Shannon Graph Complexity (SGC) summarizes the network distribution of link weights and allows distinguishing between primary and secondary pathways. Their joint use may help in understanding the underpinnings of the functional network hyperactivation and task-related hypomodulation previously described in psychoses. METHODS: We used 64-sensor EEG recordings during a P300 oddball task in 128 SZ patients (96 chronic, CR, and 32 first episodes, FE), as well as 46 bipolar disorder (BD) patients, and 92 healthy controls (HC). Pre-stimulus and modulation (task-response minus pre-stimulus windows values) of CS and SGC were assessed in the theta band (4-8 Hz) and the broadband (4-70 Hz). RESULTS: Compared to HC, SZ patients (CR and FE) showed significantly higher pre-stimulus CS values in the broadband, and both SZ and BD patients showed lower theta-band CS modulation. SGC modulation values, both theta-band and broadband, were also abnormally reduced in CR patients. Statistically significant relationships were found in the theta band between SGC modulation and both CS pre-stimulus and modulation values in patients. CS altered measures in patients were additionally related to their cognitive outcome and negative symptoms. A primary role of antipsychotics in these results was ruled out. CONCLUSIONS: Our results linking SGC and CS alterations in psychotic patients supported a hyperactive and hypomodulatory network mainly involving connections in secondary pathways.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Encéfalo , Eletroencefalografia/métodos
18.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37502934

RESUMO

A universal principle of sensory perception is the progressive transformation of sensory information from broad non-specific signals to stimulus-selective signals that form the basis of perception. To perceive color, our brains must transform the wavelengths of light reflected off objects into the derived quantities of brightness, saturation and hue. Neurons responding selectively to hue have been reported in primate cortex, but it is unknown how their narrow tuning in color space is produced by upstream circuit mechanisms. To enable circuit level analysis of color perception, we here report the discovery of neurons in the Drosophila optic lobe with hue selective properties. Using the connectivity graph of the fly brain, we construct a connectomics-constrained circuit model that accounts for this hue selectivity. Unexpectedly, our model predicts that recurrent connections in the circuit are critical for hue selectivity. Experiments using genetic manipulations to perturb recurrence in adult flies confirms this prediction. Our findings reveal the circuit basis for hue selectivity in color vision.

19.
Schizophr Bull ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37951230

RESUMO

BACKGROUND AND HYPOTHESIS: Corollary discharge mechanism suppresses the conscious auditory sensory perception of self-generated speech and attenuates electrophysiological markers such as the auditory N1 Event-Related Potential (ERP) during Electroencephalographic (EEG) recordings. This phenomenon contributes to self-identification and seems to be altered in people with schizophrenia. Therefore, its alteration could be related to the anomalous self-experiences (ASEs) frequently found in these patients. STUDY DESIGN: To analyze corollary discharge dysfunction as a possible substrate of ASEs, we recorded EEG ERP from 43 participants with schizophrenia and 43 healthy controls and scored ASEs with the 'Inventory of Psychotic-Like Anomalous Self-Experiences' (IPASE). Positive and negative symptoms were also scored with the 'Positive and Negative Syndrome Scale for Schizophrenia' (PANSS) and with the 'Brief Negative Symptom Scale' (BNSS) respectively. The N1 components were elicited by two task conditions: (1) concurrent listening to self-pronounced vowels (talk condition) and (2) subsequent non-concurrent listening to the same previously self-uttered vowels (listen condition). STUDY RESULTS: The amplitude of the N1 component elicited by the talk condition was lower compared to the listen condition in people with schizophrenia and healthy controls. However, the difference in N1 amplitude between both conditions was significantly higher in controls than in schizophrenia patients. The values of these differences in patients correlated significantly and negatively with the IPASE, PANSS, and BNSS scores. CONCLUSIONS: These results corroborate previous data relating auditory N1 ERP amplitude with altered corollary discharge mechanisms in schizophrenia and support corollary discharge dysfunction as a possible underpinning of ASEs in this illness.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35218880

RESUMO

There is some consistency in previous EEG findings that patients with schizophrenia have increased resting-state cortical activity. Furthermore, in previous work, we have provided evidence that there is a deficit in the modulation of bioelectrical activity during the performance of a P300 task in schizophrenia. Our hypothesis here is that a basal hyperactivation would be related with altered ability to change or modulate cortical activity during a cognitive task. However, no study so far, to the best of our knowledge, has studied the association between resting-state activity and task-related modulation. With this aim, we used a dual EEG paradigm (resting state and oddball task for elicitation of the P300 evoked potential) in a sample of patients with schizophrenia (n = 100), which included a subgroup of patients with first episode psychosis (n = 30), as well as a group of healthy controls (n = 93). The study measures were absolute power for resting-state; and spectral entropy (SE) and connectivity strength (CS) for P300-task data, whose modulation had been previously found to be altered in schizophrenia. Following the literature on P300, we focused our study on the theta frequency band. As expected, our results showed an increase in resting state activity and altered task-related modulation. Moreover, we found an inverse relationship between the amount of resting-state activity and modulation of task-related activity. Our results confirm our hypothesis and support the idea that a greater amount of resting theta-band synchrony could hamper the modulation of signal regularity (quantified by SE) and activity density (measured by CS) during the P300 task performance. This association was found in both patients and controls, suggesting the existence of a common mechanism and a possible ceiling effect in schizophrenia patients in relation to a decreased inhibitory function that limits their cortical reactivity to the task.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Eletroencefalografia , Entropia , Humanos , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA