Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686339

RESUMO

Septins are considered the fourth component of the cytoskeleton with the septin7 isoform playing a critical role in the formation of diffusion barriers in phospholipid bilayers and intra- and extracellular scaffolds. While its importance has already been confirmed in different intracellular processes, very little is known about its role in skeletal muscle. Muscle regeneration was studied in a Sept7 conditional knock-down mouse model to prove the possible role of septin7 in this process. Sterile inflammation in skeletal muscle was induced which was followed by regeneration resulting in the upregulation of septin7 expression. Partial knock-down of Sept7 resulted in an increased number of inflammatory cells and myofibers containing central nuclei. Taken together, our data suggest that partial knock-down of Sept7 hinders the kinetics of muscle regeneration, indicating its crucial role in skeletal muscle functions.


Assuntos
Citoesqueleto , Infertilidade , Animais , Camundongos , Difusão , Modelos Animais de Doenças , Músculo Esquelético , Septinas/genética
2.
J Pineal Res ; 73(4): e12827, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030553

RESUMO

The biomechanical environment plays a key role in regulating cartilage formation, but the current understanding of mechanotransduction pathways in chondrogenic cells is incomplete. Among the combination of external factors that control chondrogenesis are temporal cues that are governed by the cell-autonomous circadian clock. However, mechanical stimulation has not yet directly been proven to modulate chondrogenesis via entraining the circadian clock in chondroprogenitor cells. The purpose of this study was to establish whether mechanical stimuli entrain the core clock in chondrogenic cells, and whether augmented chondrogenesis caused by mechanical loading was at least partially mediated by the synchronised, rhythmic expression of the core circadian clock genes, chondrogenic transcription factors, and cartilage matrix constituents at both transcript and protein levels. We report here, for the first time, that cyclic uniaxial mechanical load applied for 1 h for a period of 6 days entrains the molecular clockwork in chondroprogenitor cells during chondrogenesis in limb bud-derived micromass cultures. In addition to the several core clock genes and proteins, the chondrogenic markers SOX9 and ACAN also followed a robust sinusoidal rhythmic expression pattern. These rhythmic conditions significantly enhanced cartilage matrix production and upregulated marker gene expression. The observed chondrogenesis-promoting effect of the mechanical environment was at least partially attributable to its entraining effect on the molecular clockwork, as co-application of the small molecule clock modulator longdaysin attenuated the stimulatory effects of mechanical load. This study suggests that an optimal biomechanical environment enhances tissue homoeostasis and histogenesis during chondrogenesis at least partially through entraining the molecular clockwork.


Assuntos
Relógios Circadianos , Melatonina , Condrogênese , Mecanotransdução Celular , Melatonina/farmacologia , Fatores de Transcrição/metabolismo , Condrócitos/metabolismo , Células Cultivadas , Diferenciação Celular
3.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638769

RESUMO

The chemical milieu, microbiota composition, and immune activity show prominent differences in distinct healthy skin areas. The objective of the current study was to compare the major permeability barrier components (stratum corneum and tight junction (TJ)), investigate the distribution of (corneo)desmosomes and TJs, and measure barrier function in healthy sebaceous gland-rich (SGR), apocrine gland-rich (AGR), and gland-poor (GP) skin regions. Molecules involved in cornified envelope (CE) formation, desquamation, and (corneo)desmosome and TJ organization were investigated at the mRNA and protein levels using qRT-PCR and immunohistochemistry. The distribution of junction structures was visualized using confocal microscopy. Transepidermal water loss (TEWL) functional measurements were also performed. CE intracellular structural components were similarly expressed in gland-rich (SGR and AGR) and GP areas. In contrast, significantly lower extracellular protein levels of (corneo)desmosomes (DSG1 and CDSN) and TJs (OCLN and CLDN1) were detected in SGR/AGR areas compared to GP areas. In parallel, kallikrein proteases were significantly higher in gland-rich regions. Moreover, gland-rich areas were characterized by prominently disorganized junction structures ((corneo)desmosomes and TJs) and significantly higher TEWL levels compared to GP skin, which exhibited a regular distribution of junction structures. According to our findings, the permeability barrier of our skin is not uniform. Gland-rich areas are characterized by weaker permeability barrier features compared with GP regions. These findings have important clinical relevance and may explain the preferred localization of acantholytic skin diseases on gland-rich skin regions (e.g., Pemphigus foliaceus, Darier's disease, and Hailey-Hailey disease).


Assuntos
Acantólise/metabolismo , Epiderme/metabolismo , Glândulas Sebáceas/metabolismo , Junções Íntimas/metabolismo , Acantólise/patologia , Adulto , Idoso , Epiderme/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Permeabilidade , Glândulas Sebáceas/patologia , Junções Íntimas/patologia
4.
J Neuroinflammation ; 14(1): 125, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645297

RESUMO

BACKGROUND: All known biological functions of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) are mediated by type 1 interleukin receptor (IL-1R1). IL-1ß-IL-1R1 signaling modulates various neuronal functions including spinal pain processing. Although the role of IL-1ß in pain processing is generally accepted, there is a discussion in the literature whether IL-1ß exerts its effect on spinal pain processing by activating neuronal or glial IL-1R1. To contribute to this debate, here we investigated the expression and cellular distribution of IL-1R1 in the superficial spinal dorsal horn in control animals and also in inflammatory pain. METHODS: Experiments were performed on rats and wild type as well as IL-1R1-deficient mice. Inflammatory pain was evoked by unilateral intraplantar injection of complete Freund adjuvant (CFA). The nociceptive responsiveness of control and CFA-treated animals were tested daily for withdrawal responses to mechanical and thermal stimuli before and after CFA injection. Changes in the expression of 48 selected genes/mRNAs and in the quantity of IL-1R1 protein during the first 3 days after CFA injection were measured with the TaqMan low-density array method and Western blot analysis, respectively. The cellular localization of IL-1R1 protein was investigated with single and double staining immunocytochemical methods. RESULTS: We found a six times and two times increase in IL-1R1 mRNA and protein levels, respectively, in the dorsal horn of CFA-injected animals 3 days after CFA injection, at the time of the summit of mechanical and thermal allodynia. Studying the cellular distribution of IL-1R1, we found an abundant expression of IL-1R1 on the somatodendritic compartment of neurons and an enrichment of the receptor in the postsynaptic membranes of some excitatory synapses. In contrast to the robust neuronal localization, we observed only a moderate expression of IL-1R1 on astrocytes and a negligible one on microglial cells. CFA injection into the hind paw caused a remarkable increase in the expression of IL-1R1 in neurons, but did not alter the glial expression of the receptor. CONCLUSION: The results suggest that IL-1ß exerts its effect on spinal pain processing primarily through neuronal IL-1R1, but it can also interact in some extent with IL-1R1 expressed by astrocytes.


Assuntos
Adjuvante de Freund/toxicidade , Neuroglia/metabolismo , Neurônios/metabolismo , Dor/metabolismo , Receptores Tipo I de Interleucina-1/biossíntese , Corno Dorsal da Medula Espinal/metabolismo , Animais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Dor/induzido quimicamente , Dor/patologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Wistar , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia
5.
Front Cell Neurosci ; 18: 1382465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784707

RESUMO

The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) influences neurotransmission in the central nervous system mainly by activating type 1 cannabinoid receptor (CB1). Following its release, 2-AG is broken down by hydrolases to yield arachidonic acid, which may subsequently be metabolized by cyclooxygenase-2 (COX-2). COX-2 converts arachidonic acid and also 2-AG into prostanoids, well-known inflammatory and pro-nociceptive mediators. Here, using immunohistochemical and biochemical methods and pharmacological manipulations, we found that reactive spinal astrocytes and microglia increase the expression of COX-2 and the production of prostaglandin E2 when exposed to 2-AG. Both 2-AG and PGE2 evoke calcium transients in spinal astrocytes, but PGE2 showed 30% more efficacy and 55 times more potency than 2-AG. Unstimulated spinal dorsal horn astrocytes responded to 2-AG with calcium transients mainly through the activation of CB1. 2-AG induced exaggerated calcium transients in reactive astrocytes, but this increase in the frequency and area under the curve of calcium signals was only partially dependent on CB1. Instead, aberrant calcium transients were almost completely abolished by COX-2 inhibition. Our results suggest that both reactive spinal astrocytes and microglia perform an endocannabinoid-prostanoid switch to produce PGE2 at the expense of 2-AG. PGE2 in turn is responsible for the induction of aberrant astroglial calcium signals which, together with PGE2 production may play role in the development and maintenance of spinal neuroinflammation-associated disturbances such as central sensitization.

6.
Biomedicines ; 11(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672635

RESUMO

Hidradenitis suppurativa (HS) is a Th1/17-driven inflammatory skin disease of the apocrine gland-rich (AGR) skin regions, where keratinocytes seem to be the crucial drivers of the initial pathogenic steps. However, the possible role of permeability barrier alteration in activating keratinocytes during HS development has not been clarified. We compared the major permeability barrier elements of non-lesional HS (HS-NL; n = 10) and lesional HS (HS-L; n = 10) skin with healthy AGR regions (n = 10) via RT-qPCR and immunohistochemistry. Stratum corneum components related to cornified envelope formation, corneocyte desquamation and (corneo)desmosome organization were analyzed along with tight junction molecules and barrier alarmins. The permeability barrier function was also investigated with transepidermal water loss (TEWL) measurements (n = 16). Junction structures were also visualized using confocal microscopy. At the gene level, none of the investigated molecules were significantly altered in HS-NL skin, while 11 molecules changed significantly in HS-L skin versus control. At the protein level, the investigated molecules were similarly expressed in HS-NL and AGR skin. In HS-L skin, only slight changes were detected; however, differences did not show a unidirectional alteration, as KRT1 and KLK5 were detected in decreased levels, and KLK7, KRT6 and DSG1 in increased levels. No significant differences in TEWL or the expression of junction structures were assessed. Our findings suggest that the permeability barrier is not significantly damaged in HS skin and permeability barrier alterations are not the driver factors of keratinocyte activation in this disease.

7.
Front Cell Neurosci ; 11: 39, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265242

RESUMO

Endocannabinoids are pleiotropic lipid messengers that play pro-homeostatic role in cellular physiology by strongly influencing intracellular Ca2+ concentration through the activation of cannabinoid receptors. One of the best-known endocannabinoid '2-AG' is chemically unstable in aqueous solutions, thus its molecular rearrangement, resulting in the formation of 1-AG, may influence 2-AG-mediated signaling depending on the relative concentration and potency of the two isomers. To predict whether this molecular rearrangement may be relevant in physiological processes and in experiments with 2-AG, here we studied if isomerization of 2-AG has an impact on 2-AG-induced, CB1-mediated Ca2+ signaling in vitro. We found that the isomerization-dependent drop in effective 2-AG concentration caused only a weak diminution of Ca2+ signaling in CB1 transfected COS7 cells. We also found that 1-AG induces Ca2+ transients through the activation of CB1, but its working concentration is threefold higher than that of 2-AG. Decreasing the concentration of 2-AG in parallel to the prevention of 1-AG formation by rapid preparation of 2-AG solutions, caused a significant diminution of Ca2+ signals. However, various mixtures of the two isomers in a fix total concentration - mimicking the process of isomerization over time - attenuated the drop in 2-AG potency, resulting in a minor decrease in CB1 mediated Ca2+ transients. Our results indicate that release of 2-AG into aqueous medium is accompanied by its isomerization, resulting in a drop of 2-AG concentration and simultaneous formation of the similarly bioactive isomer 1-AG. Thus, the relative concentration of the two isomers with different potency and efficacy may influence CB1 activation and the consequent biological responses. In addition, our results suggest that 1-AG may play role in stabilizing the strength of cannabinoid signal in case of prolonged 2-AG dependent cannabinoid mechanisms.

8.
Brain Struct Funct ; 222(5): 2157-2171, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27783222

RESUMO

The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.


Assuntos
Interneurônios/fisiologia , Dor/fisiopatologia , Células do Corno Posterior/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Animais , Neurônios GABAérgicos/fisiologia , Camundongos Transgênicos , Inibição Neural/fisiologia , Corno Dorsal da Medula Espinal/embriologia , Corno Dorsal da Medula Espinal/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo
9.
Brain Struct Funct ; 220(5): 2625-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24942136

RESUMO

The importance of 2-AG-mediated endogenous cannabinoid signaling in spinal pain control has recently been well substantiated. Although the degradation of 2-AG seems to be essential in cannabinoid-mediated spinal nociceptive information processing, no experimental data are available about the cellular distribution of monoacylglycerol lipase (MGL), the main degrading enzyme of 2-AG in the spinal dorsal horn. Thus, here we investigated the cellular distribution of MGL in laminae I-II of the spinal gray matter with immunocytochemical methods and revealed an abundant immunoreactivity for MGL in the rodent superficial spinal dorsal horn. We addressed the co-localization of MGL with markers of peptidergic and non-peptidergic primary afferents, axon terminals of putative glutamatergic and GABAergic spinal neurons, as well as astrocytic and microglial profiles, and we found that nearly 17 % of the peptidergic (immunoreactive for CGRP), a bit more than 10 % of the axon terminals of putative glutamatergic spinal neurons (immunoreactive for VGLUT2), and approximately 20 % of the astrocytic (immunoreactive for GFAP) profiles were immunolabeled for MGL. On the other hand, however, axon terminals of non-peptidergic (binding isolectin-B4) nociceptive primary afferents and putative inhibitory spinal neurons (immunoreactive for VGAT) as well as microglial (immunoreactive for CD11b) profiles showed negligible immunostaining for MGL. The results suggest that only nociceptive inputs arriving through a population of CGRP immunoreactive fibers are modulated by the spinal DGLα-MGL pathway. We also postulate that the DGLα-MGL signaling pathway may modulate spinal excitatory but not inhibitory neural circuits.


Assuntos
Axônios/metabolismo , Monoacilglicerol Lipases/metabolismo , Neurônios/citologia , Terminações Pré-Sinápticas/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Modelos Animais , Monoacilglicerol Lipases/imunologia , Células do Corno Posterior/metabolismo , Ratos Endogâmicos WKY
10.
J Comp Neurol ; 523(13): 1967-83, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25764511

RESUMO

γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the ß3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons.


Assuntos
Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal/citologia , Simportadores/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Transporte/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Células do Corno Posterior/citologia , Células do Corno Posterior/diagnóstico por imagem , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Receptores da Neurocinina-1/metabolismo , Ultrassonografia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/ultraestrutura , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA