Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 17(9): 3745-55, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16790496

RESUMO

Mitochondria constantly fuse and divide to adapt organellar morphology to the cell's ever-changing physiological conditions. Little is known about the molecular mechanisms regulating mitochondrial dynamics. F-box proteins are subunits of both Skp1-Cullin-F-box (SCF) ubiquitin ligases and non-SCF complexes that regulate a large number of cellular processes. Here, we analyzed the roles of two yeast F-box proteins, Mfb1 and Mdm30, in mitochondrial dynamics. Mfb1 is a novel mitochondria-associated F-box protein. Mitochondria in mutants lacking Mfb1 are fusion competent, but they form aberrant aggregates of interconnected tubules. In contrast, mitochondria in mutants lacking Mdm30 are highly fragmented due to a defect in mitochondrial fusion. Fragmented mitochondria are docked but nonfused in Deltamdm30 cells. Mitochondrial fusion is also blocked during sporulation of homozygous diploid mutants lacking Mdm30, leading to a mitochondrial inheritance defect in ascospores. Mfb1 and Mdm30 exert nonredundant functions and likely have different target proteins. Because defects in F-box protein mutants could not be mimicked by depletion of SCF complex and proteasome core subunits, additional yet unknown factors are likely involved in regulating mitochondrial dynamics. We propose that mitochondria-associated F-box proteins Mfb1 and Mdm30 are key components of a complex machinery that regulates mitochondrial dynamics throughout yeast's entire life cycle.


Assuntos
Proteínas F-Box/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas F-Box/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Fenótipo , Ligação Proteica , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/citologia
2.
J Mol Biol ; 368(1): 44-54, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17335847

RESUMO

The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas de Membrana/fisiologia , Membranas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Citocromos c/metabolismo , Proteínas Fúngicas/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
3.
Methods Mol Biol ; 372: 81-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18314719

RESUMO

Budding yeast Saccharomyces cerevisiae is widely used to study mitochondrial biogenesis and function. We review some basic properties that make yeast an ideal model organism to investigate various aspects of mitochondrial biology. We discuss genetic features of commonly used yeast strains that are important for mitochondrial studies. Furthermore, this chapter provides protocols describing yeast culture conditions and procedures for isolation and purification of mitochondria.


Assuntos
Fracionamento Celular/métodos , Mitocôndrias/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Centrifugação , Saccharomyces cerevisiae/citologia
4.
Biol Chem ; 388(9): 917-26, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17696775

RESUMO

Mitochondria are amazingly dynamic organelles. They continuously move along cytoskeletal tracks and frequently fuse and divide. These processes are important for maintenance of mitochondrial functions, for inheritance of the organelles upon cell division, for cellular differentiation and for apoptosis. As the machinery of mitochondrial behavior has been highly conserved during evolution, it can be studied in simple model organisms, such as yeast. During the past decade, several key components of mitochondrial dynamics have been identified and functionally characterized in Saccharomyces cerevisiae. These include the mitochondrial fusion and fission machineries and proteins required for maintenance of tubular shape and mitochondrial motility. Taken together, these findings reveal a comprehensive picture that shows the cellular processes and molecular components required for mitochondrial inheritance and morphogenesis in a simple eukaryotic cell.


Assuntos
Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA