Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Chem ; 94(35): 12176-12184, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36001377

RESUMO

Isolation and chemical characterization of target components in fast-paced pharmaceutical laboratories can often be challenging, especially when dealing with mixtures of closely related, possibly unstable species. Traditionally, this process involves intense labor and manual intervention including chromatographic method development and optimization, fraction collection, and drying processes prior to NMR analyses for unambiguous structure elucidation. To circumvent these challenges, a foundational framework for the proper utilization of supercritical carbon dioxide (scCO2) and deuterated modifiers (CD3OD) in sub/supercritical fluid chromatography (SFC) is herein introduced. This facilitates a streamlined multicomponent isolation with minimized protic residues, further enabling immediate NMR analysis. In addition to bypassing tedious drying processes and minimizing analyte degradation, this approach (complementary to traditional reversed-phase liquid chromatography, RPLC) delivers highly efficient separations and automated fraction collection using readily available analytical/midscale SFC instrumentation. A series of diverse analytes across a wide spectrum of chemical properties (acid, basic, and neutral), combined with different stationary-phase columns in SFC are investigated using both a protic organic modifier (CH3OH) and its deuterated counterpart (CD3OD). The power of this framework is demonstrated with pharmaceutically relevant applications in the context of target characterization and analysis of complex multicomponent reaction mixtures from modern synthetic chemistry, demonstrating high isolation yields while reducing both the environmental footprint and manual intervention. This workflow enables unambiguous fast-paced structure elucidation on the analytical scale, providing results that are comparable to traditional, but time-consuming, RPLC purification approaches.


Assuntos
Cromatografia com Fluido Supercrítico , Ácidos , Cromatografia de Fase Reversa , Cromatografia com Fluido Supercrítico/métodos
2.
Anal Bioanal Chem ; 414(12): 3581-3591, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441858

RESUMO

Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensurate level of analytical innovation to deliver critical assays across functional areas. Chromatography hyphenated to numerous choices of detection has undeniably been the preferred analytical tool in the pharmaceutical industry for decades to analyze and isolate targets (e.g., APIs, intermediates, and byproducts) from multicomponent mixtures. Among many techniques, ion exchange chromatography (IEX) is widely used for the analysis and purification of biopharmaceuticals due to its unique selectivity that delivers distinctive chromatographic profiles compared to other separation modes (e.g., RPLC, HILIC, and SFC) without denaturing protein targets upon isolation process. However, IEX method development is still considered one of the most challenging and laborious approaches due to the many variables involved such as elution mechanism (via salt, pH, or salt-mediated-pH gradients), stationary phase's properties (positively or negatively charged; strong or weak ion exchanger), buffer type and ionic strength as well as pH choices. Herein, we introduce a new framework consisting of a multicolumn IEX screening in conjunction with computer-assisted simulation for efficient method development and purification of biopharmaceuticals. The screening component integrates a total of 12 different columns and 24 mobile phases that are sequentially operated in a straightforward automated fashion for both cation and anion exchange modes (CEX and AEX, respectively). Optimal and robust operating conditions are achieved via computer-assisted simulation using readily available software (ACD Laboratories/LC Simulator), showcasing differences between experimental and simulated retention times of less than 0.5%. In addition, automated fraction collection is also incorporated into this framework, illustrating the practicality and ease of use in the context of separation, analysis, and purification of nucleotides, peptides, and proteins. Finally, we provide examples of the use of this IEX screening as a framework to identify efficient first dimension (1D) conditions that are combined with MS-friendly RPLC conditions in the second dimension (2D) for two-dimensional liquid chromatography experiments enabling purity analysis and identification of pharmaceutical targets.


Assuntos
Produtos Biológicos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Peptídeos , Proteínas/análise
3.
Angew Chem Int Ed Engl ; 61(45): e202208854, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36111975

RESUMO

Generality in analytical chemistry can be manifested in impactful platforms that can streamline modern organic synthesis and biopharmaceutical processes. We herein introduce a hybrid separation technique named Dual-Gradient Unified Chromatography (DGUC), which is built upon an automated dynamic modulation of CO2 , organic modifier, and water blends with various buffers. This concept enables simultaneous multicomponent analysis of both small and large molecules across a wide polarity range in single experimental runs. After a careful investigation of its fundamental aspects, a DGUC-DAD-MS screening workflow that combines multiple orthogonal column and mobile phase choices across a far-reaching universal elution profile is also reported. The power of this framework is demonstrated with new analytical applications guiding academic and industrial laboratories in the development of new (bio)pharmaceutical targets (e.g. synthetic intermediates, nucleosides, cyclic and linear peptides, proteins, antibody drug conjugates).


Assuntos
Cromatografia , Proteínas , Proteínas/análise , Peptídeos , Água/química , Nucleosídeos
4.
Chem Sci ; 15(16): 5980-5992, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665537

RESUMO

P(v) iminophosphorane compounds are accessed via electrochemical oxidation of commercially available P(iii) phosphines, including mono-, di- and tri-dentate phosphines, as well as chiral phosphines. The reaction uses inexpensive bis(trimethylsilyl)carbodiimide as an efficient and safe aminating reagent. DFT calculations, cyclic voltammetry, and NMR studies provide insight into the reaction mechanism. The proposed mechanism reveals a special case of sequential paired electrolysis. DFT calculations of the frontier orbitals of an iminophosphorane are compared with those of the analogous phosphines and phosphine oxides. X-ray crystallographic studies of the ligands as well as a Ni-coordination complex provide structural insight for these ligands. The utility of these iminophosphoranes as ligands is demonstrated in nickel-catalyzed cross-electrophile couplings including C(sp2)-C(sp3) and C(sp2)-C(sp2) couplings, an electrochemically driven C-N cross-coupling, and a photochemical arylative C(sp3)-H functionalization. In some cases, these new ligands provide improved performance over commonly used sp2-N-based ligands (e.g. 4,4'-di-tert-butyl-2,2'-bipyridine).

5.
J Chromatogr A ; 1674: 463094, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609494

RESUMO

Chiral sub/supercritical fluid chromatography (SFC) has established itself as one of the preferred techniques for enantioseparations at both analytical and preparative scale. Herein, we introduce a parallel multicolumn SFC screening for automated chiral method development in fast-paced settings. The practicality and speed advantages of this approach are illustrated with parallel screening of a diverse set of chiral molecules across ten columns with five different organic modifiers/CO2 based eluents enabling rapid identification of suitable enantioseparation conditions for accelerated purification of pharmaceutical targets. Rapid delivery turnarounds of pure enantiomers of less than 1 h from screening to target isolation are demonstrated illustrating the power of this approach.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Indicadores e Reagentes , Preparações Farmacêuticas , Estereoisomerismo
6.
J Chromatogr A ; 1595: 199-206, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30871755

RESUMO

The evaluation of higher than typical linear velocities is discussed for supercritical fluid chromatographic purifications on the preparative scale. SFC separation efficiency suffers far less at high linear velocities than HPLC by the rapid mass transfer of analytes carried by compressed CO2 through the stationary phase. The technique is discussed using chiral test compounds and columns. In many cases, running at high linear velocities can yield significant time savings and decreased consumption of mobile phase solvent, while also lowering energy consumption. Within the practical limitations of commercial instrumentation, using 20 µm particles can aid in achieving higher linear velocities not attainable with smaller 5 µm particles, particularly when running with high percentages of organic co-solvent. Use of larger particles for the stationary phase also lowers the associated column cost. These benefits can yield an overall purification process that is more productive and environmentally friendly.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia com Fluido Supercrítico , Técnicas de Química Analítica/economia , Técnicas de Química Analítica/normas , Pressão , Solventes/química , Estereoisomerismo
7.
J Chromatogr A ; 1101(1-2): 204-13, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16257000

RESUMO

Preparation and evaluation of a number of stationary phases for improved chromatographic purification of pneumocandin B0, a key intermediate in the synthesis of the antifungal agent, Cancidas, has led to the identification of several materials with potential for improved performance.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Peptídeos Cíclicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Equinocandinas , Dióxido de Silício
8.
J Chromatogr A ; 1328: 98-103, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24456706

RESUMO

An evaluation of the use of non-conventional polar modifiers for the supercritical fluid chromatographic separation of enantiomers on immobilized chiral stationary phases is presented. The resolution of a group of nine commercially available racemates is studied on the Chiralpak IA, IB, IC, ID, IE, and IF chiral stationary phases using CO2-based eluents containing non-conventional polar modifiers such as dichloromethane, chloroform, tetrahydrofuran, 2-methyl tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, acetone, ethyl acetate, toluene, 2,2,2-trifluoroethanol, and N,N-dimethylformamide. Screening experiments and method development for the commercial racemates on the immobilized columns with the non-conventional solvents demonstrated an ability to adjust the retention and improve resolution. From these results we were able to assign a general eluotropic relationship between the non-conventional solvents and methanol. A general ability to selectively adjust chromatographic retention while improving analyte solubility can lead to improved preparative chromatographic performance.


Assuntos
Preparações Farmacêuticas/análise , Solventes/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Estereoisomerismo
9.
J Org Chem ; 72(13): 4864-71, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17521199

RESUMO

This paper describes a remarkably efficient process for the preparation of gamma-secretase inhibitor 1. The target is synthesized in only five steps with an overall yield of 58%. The key operation is a highly selective and practical, crystallization-driven transformation for the conversion of a mixture of tertiary benzylic alcohols into the desired sulfide diastereomer with 94:6 dr. This unprecedented process is based upon a reversible carbon-sulfur bond formation under acidic conditions.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Carbono/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Enxofre/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Cristalização , Flúor/química , Cetoácidos/síntese química , Cetoácidos/química , Magnésio/química , Estrutura Molecular , Oxirredução , Inibidores de Proteases/química , Solubilidade , Estereoisomerismo , Sulfetos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA