Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Metab Brain Dis ; 35(7): 1175-1187, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32548708

RESUMO

Diabetes mellitus is an increasing metabolic disease worldwide associated with central nervous system disorders. Coffee is a widely consumed beverage that enriched with antioxidants with numerous medicinal applications. Accordingly, the present study aimed to investigate the therapeutic potential of orally administered green coffee bean water extract (GCBWE) against cortical damage induced by high fat diet (HFD) followed by a single injection of streptozotocin (STZ) in rats. Metformin (Met) was used as standard antidiabetic drug. Animals were allocated into six groups: control, GCBWE (100 mg/kg), HFD/STZ (40 mg/kg), HFD/STZ + GCBWE (50 mg/kg), HFD/STZ + GCBWE (100 mg/kg) and HFD/STZ + Met (200 mg/kg) which were treated daily for 28 days. Compared to control rats, HFD/STZ-treated rats showed decreased levels of cortical dopamine, norepinephrine and serotonin with marked increases in their metabolites. Further, HFD/STZ treatment resulted in notable elevations in malondialdehyde, protein carbonyl and total nitrite levels paralleled with declines in antioxidant markers (SOD, CAT, GPx, GR and GSH) and down-regulations of Sod2, Cat, GPx1 and Gsr gene expression. Neuroinflammation was evident in diabetic animals by marked elevations in TNF-α, IL-1ß and up-regulation of inducible nitric oxide synthase. Significant rises incaspase-3 and Bax with decline in Bcl-2 level were noticed in diabetic rats together with similar results in their gene expressions. Cortical histopathological examination supported the biochemical and molecular findings. GCBWE administration achieved noteworthy neuroprotection in diabetic animals in most assessed parameters. The overall results suggested that antioxidant, anti-inflammatory; anti-apoptotic activities of GCBWE restored the cortical neurochemistry in diabetic rats.


Assuntos
Encéfalo/efeitos dos fármacos , Café , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dopamina/metabolismo , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Norepinefrina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Serotonina/metabolismo
2.
J Food Biochem ; 44(12): e13505, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047361

RESUMO

Here, we examined the protective effect of ferulic acid (FA) on cadmium chloride (CdCl2 )-mediated reproductive toxicity in male rats. Animals were divided into four groups: control, FA (20 mg/kg), CdCl2 (6.5 mg/kg), and FA + CdCl2 . CdCl2 treatment evoked a significant increase in testis cadmium concentration in addition to obvious increase in testosterone, luteinizing hormone, and follicle-stimulating hormone levels. Moreover, CdCl2 -induced oxidative damage through exhausting the cellular defenses (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione) and downregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) expression accompanied by increases of malondialdehyde and nitric oxide contents. Testicular inflammation was evident indicated by increased levels of interleukin-1ß and tumor necrosis factor-α in CdCl2 -treated rats. CdCl2 exposure also decreased the expression of the proliferating cell nuclear antigen and augmented apoptotic events associated with prominent histopathological alterations. However, FA coadministration mitigated the impaired hormonal level, apoptotic and inflammatory injuries elicited by CdCl2, and maintained the oxidant/antioxidant balance in testicular tissue via Nrf2 activation. PRACTICAL APPLICATIONS: Cadmium is an environmental toxicant and known to cause adverse effects including reproductive toxicity. However, antioxidant application has been found to protect against heavy metals-mediated toxic effects. Here, we examined the potential protective efficacy of ferulic acid against cadmium-mediated testicular impairments through estimating the amount of cadmium in the testis, hormonal profile, oxidative status, inflammatory response, apoptotic and proliferating markers in addition to the histopathological alterations. The obtained findings revealed that ferulic acid supplementation was able to abolish the testicular damages coupled with cadmium exposure. The protective efficiency of ferulic acid may correlated with its strong antioxidant, anti-inflammatory, and antiapoptotic activities; suggesting that ferulic acid may be used to ameliorate cadmium-induced testicular deficits.


Assuntos
Cádmio , Fator 2 Relacionado a NF-E2 , Animais , Apoptose , Cádmio/toxicidade , Ácidos Cumáricos , Inflamação , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA