Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Natl Cancer Inst ; 94(13): 1010-9, 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12096086

RESUMO

BACKGROUND: The ubiquitous plasma membrane transcobalamin II receptor (TC II-R) mediates uptake of cobalamin (Cbl; vitamin B12), an essential micronutrient. Tumors often require more Cbl than normal tissue, and increased Cbl uptake may result from increased TC II-R expression. To examine whether Cbl could therefore be used as a carrier molecule to target a chemotherapy drug, we tested an analogue of Cbl with nitric oxide as a ligand, nitrosylcobalamin (NO-Cbl). Because interferon beta (IFN-beta) has antitumor effects and increases expression of some membrane receptors, we examined whether it may enhance the effects of NO-Cbl. METHODS: Antiproliferative effects of NO-Cbl were assessed in 24 normal and cancer cell lines. Xenograft tumors of human ovarian cancer NIH-OVCAR-3 cells were established in athymic nude mice, and tumor growth was monitored after treatment with NO-Cbl and IFN-beta, both individually and concomitantly. TC II-R expression and apoptosis was monitored in vitro and in vivo. RNA protection assays and mitochondrial membrane potential assays were used to distinguish the extrinsic and intrinsic apoptotic pathways, respectively. RESULTS: Cancer cell lines were more sensitive to NO-Cbl (with ID(50)s [the dose that inhibits growth by 50%] as low as 2 microM) than normal cell lines (with ID(50)s of 85-135 microM). Single-agent NO-Cbl and IFN-beta treatment of NIH-OVCAR-3 xenografts induced tumor regression, whereas combination treatment induced tumor eradication. IFN-beta treatment increased TC II-R expression in vitro and uptake of [(57)Co]cobalamin in vivo. Compared with NIH-OVCAR-3 cells treated with NO-Cbl, cells treated with NO-Cbl and IFN-beta were more apoptotic and expressed higher mRNA levels of various apoptosis-associated genes. No changes in mitochondrial membrane potential were observed in cells treated with NO-Cbl. CONCLUSION: NO-Cbl inhibited tumor growth in vivo by activating the extrinsic apoptotic pathway. The increased expression of TC II-R induced by IFN-beta resulted in enhanced antitumor effects with NO-Cbl both in vitro and in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Interferon beta/uso terapêutico , Melanoma/terapia , Compostos Nitrosos/farmacologia , Neoplasias Ovarianas/terapia , Receptores de Superfície Celular/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/farmacologia , Animais , Anexina A5/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 8 , Caspase 9 , Caspases/metabolismo , Divisão Celular/efeitos dos fármacos , Terapia Combinada , Sinergismo Farmacológico , Feminino , Humanos , Técnicas Imunoenzimáticas , Masculino , Melanoma/metabolismo , Melanoma/patologia , Potenciais da Membrana , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Rodaminas , Ribonuclease Pancreático/metabolismo , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA