Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Surg Radiol Anat ; 40(1): 31-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28828519

RESUMO

PURPOSE: Advanced imaging modalities, such as multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT), greatly facilitate diagnostic medicine. In radiological research, it is important to know how accurately a scanned object is visualized, and whether the methodology leads to image distortion. The objective of this study was to evaluate whether formalin fixation impacted the accuracy of virtual 3D bone models generated via CBCT and MSCT using a software-based evaluation method that excluded human measurement errors. METHODS: A head specimen, with and without formalin preservation, was subjected to MSCT and CBCT scans using the manufacturers' predefined scanning protocols. Digital models of the lower jaw were constructed and superimposed with a master model generated based on optical scanning with an industrial non-contact scanner. Means and standard deviations were calculated to assess accuracy, and a t test was used for comparisons between the fixed and unfixed specimens. RESULTS: The extent of discrepancy between the fixed and unfixed specimens was analyzed using a total of 200 points (n = 200) in each specimen state. The mean deviation between states was 0.01 mm for MSCT (at both 80 and 140 kV). Mean values from CBCT at 0.4 voxel did not differ between states. CONCLUSIONS: Our results suggest that formalin fixation of an anatomical specimen does not substantially affect the accuracy of a three-dimensional image generated with CBCT and MSCT. Thus, fixed specimen can be used in future investigations of 3D models without concerns regarding the accuracy.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Fixadores , Formaldeído , Tomografia Computadorizada Multidetectores , Fixação de Tecidos , Humanos
2.
J Craniomaxillofac Surg ; 46(12): 2190-2196, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30318325

RESUMO

PURPOSE: Three-dimensional (3D) radiological imaging plays an important role in surgical planning used in modern dentistry. The aim of this study was to optimize imaging parameters with a special focus on voxel size and scan time. MATERIAL AND METHODS: A virtual 3D master model of a macerated human skull was generated using an industrial optical noncontact white light scanner. The skull was X-rayed with cone-beam computed tomography that was applied using different settings for voxel size and acquisition time (voxel edge length of 0.3 mm, scan times 4.8 s and 8.9 s; voxel edge length of 0.2 mm, scan times 14.7 s and 26.9 s). The scan was repeated 10 times at each setting. The CBCT scans were converted into 3D virtual models (actual value), which were superimposed with the 3D master model (reference value) to detect absolute differences. RESULTS: The mean value of deviation increased with increasing voxel size and decreasing scan time. For a voxel edge length of 0.3 mm, the mean values of deviation were 0.33 mm and 0.22 mm with scan times of 4.8 s and 8.9 s, respectively. For a voxel edge length of 0.2 mm, the mean deviations were 0.16 mm and 0.14 mm with scan times of 14.7 s and 26.9 s, respectively. CONCLUSIONS: When using small voxel sizes, the scan time does not have a significant impact on image accuracy and therefore the scan time can be shortened. However, for larger voxel sizes, shorter scan times can lead to increased inaccuracy.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Crânio/diagnóstico por imagem , Cadáver , Simulação por Computador , Humanos , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA