Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell Biochem ; 476(4): 1825-1848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33459980

RESUMO

Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Cardenolídeos/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citotoxinas/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
2.
J Neurosci ; 39(16): 2981-2994, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30679394

RESUMO

GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs) play integral roles in synaptic plasticity and can mediate excitotoxic cellular signaling at glutamatergic synapses. However, the developmental profile of functional CP-AMPARs at the auditory brainstem remains poorly understood. Through a combination of electrophysiological and live-cell Ca2+ imaging from mice of either sex, we show that the synaptic release of glutamate from the calyx of Held nerve terminal activates CP-AMPARs in the principal cells of the medial nucleus of the trapezoid body in the brainstem. This leads to significant Ca2+ influx through these receptors before the onset of hearing at postnatal day 12 (P12). Using a selective open channel blocker of CP-AMPARs, IEM-1460, we estimate that ∼80% of the AMPAR population are permeable to Ca2+ at immature P4-P5 synapses. However, after the onset of hearing, Ca2+ influx through these receptors was greatly reduced. We estimate that CP-AMPARs comprise approximately 40% and 33% of the AMPAR population at P18-P22 and P30-P34, respectively. By quantifying the rate of EPSC block by IEM-1460, we found an increased heterogeneity in glutamate release probability for adult-like calyces (P30-P34). Using tetraethylammonium (TEA), a presynaptic potassium channel blocker, we show that the apparent reduction of CP-AMPARs in more mature synapses is not a consequence of presynaptic action potential (AP) speeding. Finally, through postsynaptic AP recordings, we show that inhibition of CP-AMPARs reduces spike fidelity in juvenile synapses, but not in more mature synapses. We conclude that the expression of functional CP-AMPARs declines over early postnatal development in the calyx of Held synapse.SIGNIFICANCE STATEMENT The calyx of Held synapse is pivotal to the circuitry that computes sound localization. Postsynaptic Ca2+ influx via AMPARs may be critical for signaling the maturation of this brainstem synapse. The GluA4 subunit may dominate the AMPAR complex at mature synapses because of its fast gating kinetics and large unitary conductance. The expectation is that AMPARs dominated by GluA4 subunits should be highly Ca2+ permeable. However, we find that Ca2+-permeable AMPAR expression declines during postnatal development. Using the rate of EPSC block by IEM-1460, an open channel blocker of Ca2+-permeable AMPARs, we propose a novel method to determine glutamate release probability and uncover an increased heterogeneity in release probability for more mature calyces of Held nerve terminals.


Assuntos
Vias Auditivas/fisiologia , Tronco Encefálico/fisiologia , Cálcio/metabolismo , Receptores de AMPA/metabolismo , Localização de Som/fisiologia , Sinapses/fisiologia , Animais , Vias Auditivas/metabolismo , Tronco Encefálico/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Plasticidade Neuronal , Técnicas de Patch-Clamp , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
4.
Angew Chem Int Ed Engl ; 52(49): 13067-70, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24281890

RESUMO

Caramboxin: Patients suffering from chronic kidney disease are frequently intoxicated after ingesting star fruit. The main symptoms of this intoxication are named in the picture. Bioguided chemical procedures resulted in the discovery of caramboxin, which is a phenylalanine-like molecule that is responsible for intoxication. Functional experiments in vivo and in vitro point towards the glutamatergic ionotropic molecular actions of caramboxin, which explains its convulsant and neurodegenerative properties.


Assuntos
Injúria Renal Aguda/etiologia , Doenças Transmitidas por Alimentos/etiologia , Frutas/química , Frutas/intoxicação , Síndromes Neurotóxicas/etiologia , Neurotoxinas/intoxicação , Neurotoxinas/toxicidade , Plantas Tóxicas/química , Plantas Tóxicas/intoxicação , Injúria Renal Aguda/terapia , Animais , Produtos Biológicos , Frutas/toxicidade , Hipocampo/efeitos dos fármacos , Humanos , Ratos , Ratos Wistar , Diálise Renal
5.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158590

RESUMO

Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.


Assuntos
Córtex Motor , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Aves Canoras , Animais , Potenciais de Ação/fisiologia , Interneurônios , Neurônios Motores , Canais de Potássio Shaw
6.
Artigo em Inglês | MEDLINE | ID: mdl-22752655

RESUMO

The caudomedial nidopallium (NCM) is a telencephalic area involved in auditory processing and memorization in songbirds, but the synaptic mechanisms associated with auditory processing in NCM are largely unknown. To identify potential changes in synaptic transmission induced by auditory stimulation in NCM, we used a slice preparation for path-clamp recordings of synaptic currents in the NCM of adult zebra finches (Taenopygia guttata) sacrificed after sound isolation followed by exposure to conspecific song or silence. Although post-synaptic GABAergic and glutamatergic currents in the NCM of control and song-exposed birds did not present any differences regarding their frequency, amplitude and duration after song exposure, we observed a higher probability of generation of bursting glutamatergic currents after blockade of GABAergic transmission in song-exposed birds as compared to controls. Both song-exposed males and females presented an increase in the probability of the expression of bursting glutamatergic currents, however bursting was more commonly seen in males where they appeared even without blocking GABAergic transmission. Our data show that song exposure changes the excitability of the glutamatergic neuronal network, increasing the probability of the generation of bursts of glutamatergic currents, but does not affect basic parameters of glutamatergic and GABAergic synaptic currents.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Tentilhões/fisiologia , Ácido Glutâmico/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Masculino , Prosencéfalo/fisiologia
7.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227694

RESUMO

Neuropathic pain is one of the most important clinical consequences of injury to the somatosensory system. Nevertheless, the critical pathophysiological mechanisms involved in neuropathic pain development are poorly understood. In this study, we found that neuropathic pain is abrogated when the kynurenine metabolic pathway (KYNPATH) initiated by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is ablated pharmacologically or genetically. Mechanistically, it was found that IDO1-expressing dendritic cells (DCs) accumulated in the dorsal root leptomeninges and led to an increase in kynurenine levels in the spinal cord. In the spinal cord, kynurenine was metabolized by kynurenine-3-monooxygenase-expressing astrocytes into the pronociceptive metabolite 3-hydroxykynurenine. Ultimately, 3-hydroxyanthranilate 3,4-dioxygenase-derived quinolinic acid formed in the final step of the canonical KYNPATH was also involved in neuropathic pain development through the activation of the glutamatergic N-methyl-D-aspartate receptor. In conclusion, these data revealed a role for DCs driving neuropathic pain development through elevation of the KYNPATH. This paradigm offers potential new targets for drug development against this type of chronic pain.


Assuntos
Cinurenina , Neuralgia , Animais , Camundongos , Cinurenina/metabolismo , Ácido Quinolínico/metabolismo , Redes e Vias Metabólicas , Células Dendríticas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
8.
Nat Commun ; 12(1): 6762, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799550

RESUMO

The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navß3 to Navß4. Dynamic clamping and dialysis of Navß4's C-terminal peptide into juvenile RA neurons provide evidence that Navß4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.


Assuntos
Centro Vocal Superior/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neurônios Motores/metabolismo , Sódio/metabolismo , Potenciais de Ação/fisiologia , Animais , Tentilhões , Centro Vocal Superior/citologia , Masculino , Córtex Motor/citologia , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo
9.
Brain Res ; 1200: 1-9, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18308297

RESUMO

Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. In the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 microM WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the vanniloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2.


Assuntos
Benzoxazinas/farmacologia , Canabinoides/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Inibição Neural/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Núcleo Solitário/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Agonistas de Receptores de Canabinoides , Antagonistas de Receptores de Canabinoides , Moduladores de Receptores de Canabinoides/farmacologia , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Inibição Neural/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Núcleo Solitário/metabolismo , Transmissão Sináptica/fisiologia , Fibras Aferentes Viscerais/efeitos dos fármacos , Fibras Aferentes Viscerais/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Front Cell Neurosci ; 9: 471, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696830

RESUMO

Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons.

11.
J Neurophysiol ; 100(1): 441-55, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18480371

RESUMO

The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA A-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA A-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA A receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA A-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.


Assuntos
Córtex Auditivo/citologia , Percepção Auditiva/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Vocalização Animal , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Vias Auditivas/fisiologia , Bicuculina/farmacologia , Contagem de Células/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Tentilhões , Lateralidade Funcional , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Masculino , Modelos Biológicos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Quinoxalinas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA