RESUMO
BACKGROUND: Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. RESULTS: We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. CONCLUSIONS: Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Negro ou Afro-Americano , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idoso , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Gradação de Tumores , Células-Tronco Neoplásicas , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , População BrancaRESUMO
BACKGROUND/AIMS: Genistein, a soy isoflavone, has been shown to have anti-cancer effects in various cancers including renal cancer. Long non-coding RNA, HOX transcript antisense RNA (HOTAIR), is involved in cancer progression and metastasis, such as renal cancer. Our aim was to investigate the effects of genistein on HOTAIR chromatin remodeling functions. METHODS: We used MTS assays and Transwell migration assays to study the effects of genistein on cell proliferation and migration respectively in human renal cell carcinoma (RCC) cell lines. We used Western blots to analyze SNAIL and ZO-1 expression. We performed chromatin immunoprecipitation (ChIP) assays to study recruitment of the polycomb repressive complex 2 (PRC2) to the ZO-1 promoter. We performed RNA immunoprecipitation (RIP) assays to study interaction between HOTAIR and PRC2, SMARCB1 or ARID1A. We also performed transfection experiments to overexpress EED, HOTAIR and knockdown SMARCB1. RESULTS: Genistein reduced cell proliferation and migration of human renal cell carcinoma cell lines. ChIP assays indicated that genistein reduces recruitment of the PRC2 to the ZO-1 promoter and increased its expression. RIP assays showed that genistein inhibits HOTAIR interaction with PRC2, leading to tumor suppression. Immunoprecipitation also revealed that genistein reduced EED levels in PRC2, suggesting that decreased EED levels suppress HOTAIR interaction with PRC2. EED overexpression in the presence of genistein restored PRC2 interaction with HOTAIR and reduced ZO-1 transcription, suggesting genistein activates ZO-1 by inhibiting HOTAIR/PRC2 functions. RIP assays also showed that HOTAIR interacts with SMARCB1 and ARID1A, subunits of the human SWI/SNF chromatin remodeling complex and genistein reduces this interaction. Combination of HOTAIR overexpression and SMARCB1 knockdown in the presence of genistein revealed that genistein inhibits SNAIL transcription via the HOTAIR/SMARCB1 pathway. CONCLUSION: Genistein suppresses EED levels in PRC2 and inhibits HOTAIR/PRC2 interaction. Genistein suppresses HOTAIR/PRC2 recruitment to the ZO-1 promoter and enhances ZO-1 transcription. Genistein also inhibits SNAIL transcription via reducing HOTAIR/SMARCB1 interaction. We demonstrate that the reduction of HOTAIR interaction with chromatin remodeling factors by genistein represses HOTAIR/chromatin remodeling pathways to suppress RCC malignancy.
Assuntos
Anticarcinógenos/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Genisteína/farmacologia , Neoplasias Renais/tratamento farmacológico , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controleRESUMO
This study investigated the role of the PI3K/Akt pathway in cadmium (Cd) induced malignant transformation of normal prostate epithelial (PWR1E and RWPE1) cells. Both PWR1E and RWPE1 cells were exposed to 10 µM Cd for one year and designated as Cd-PWR1E and Cd-RWPE1. Cd-RWPE1 cells robustly formed tumors in athymic nude mice. Functionally, Cd-exposure induced tumorigenic attributes indicated by increased wound healing, migration and invasion capabilities in both cell lines. RT2-array analysis revealed many oncogenes including P110α, Akt, mTOR, NFKB1 and RAF were induced whereas tumor suppressor (TS) genes were attenuated in Cd-RWPE1. This was validated by individual quantitative-real-time-PCR at transcriptional and by immunoblot at translational levels. These results were consistent in Cd-PWR1E vs parental PWR1E cells. Gene Set Enrichment Analysis revealed that five prostate cancer (PCa) related pathways were enriched in Cd-exposed cells compared to their normal controls. These pathways include the KEGG- Pathways in cancer, Prostate Cancer Pathway, ERBB, Apoptosis and MAPK pathways. We selected up- and down-regulated genes randomly from the PI3K/Akt pathway array and profiled these in the TCGA/GDC prostate-adenocarcinoma (PRAD) patient cohort. An upregulation of oncogenes and downregulation of TS genes was observed in PCa compared to their normal controls. Taken together, our study reveals that the PI3K/Akt signaling is one of the main molecular pathways involved in Cd-driven transformation of normal prostate epithelial cells to malignant form. Understanding the molecular mechanisms involved in the Cd-driven malignant transformation of normal prostate cells will provide a significant insight to develop better therapeutic strategies for Cd-induced prostate cancer.
Assuntos
Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Cádmio/efeitos adversos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Estudos de Coortes , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Epiteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Próstata/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologiaRESUMO
PURPOSE: Cadmium (Cd) is reported to be associated with carcinogenesis. The molecular mechanisms associated with Cd-induced prostate cancer (PCa) remain elusive. MATERIALS AND METHODS: RWPE1, PWR1E and DU 145 cells were used. RT2 Profiler Array, real-time-quantitative-PCR, immunofluorescence, cell cycle, apoptosis, proliferation and colony formation assays along with Gene Set Enrichment Analysis (GSEA) were performed. RESULT: Chronic Cd exposure of non-malignant RWPE1 and PWR1E cells promoted cell survival, proliferation and colony formation with inhibition of apoptosis. Even a two-week Cd exposure of PCa cell line (DU 145) significantly increased the proliferation and decreased apoptosis. RT2 profiler array of 84 genes involved in the Erk/MAPK pathway revealed induction of gene expression in Cd-RWPE1 cells compared to RWPE1. This was confirmed by individual TaqMan gene expression analysis in both Cd-RWPE1 and Cd-PWR1E cell lines. GSEA showed an enrichment of the Erk/MAPK pathway along with other pathways such as KEGG-ERBB, KEGG-Cell Cycle, KEGG-VEGF, KEGG-Pathways in cancer and KEGG-prostate cancer pathway. We randomly selected upregulated genes from Erk/MAPK pathway and performed profile analysis in a PCa data set from the TCGA/GDC data base. We observed upregulation of these genes in PCa compared to normal samples. An increase in phosphorylation of the Erk1/2 and Mek1/2 was observed in Cd-RWPE1 and Cd-PWR1E cells compared to parental cells, confirming that Cd-exposure induces activation of the Erk/MAPK pathway. CONCLUSION: This study demonstrates that Erk/MAPK signaling is a major pathway involved in Cd-induced malignant transformation of normal prostate cells. Understanding these dominant oncogenic pathways may help develop optimal therapeutic strategies for PCa.
Assuntos
Cádmio/toxicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Próstata/efeitos dos fármacos , Próstata/enzimologia , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/enzimologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Próstata/patologia , Neoplasias da Próstata/patologiaRESUMO
The prostate cancer (PCa) genome is characterized by deletions of chromosome 8p21-22 region that increase significantly with tumor grade and are associated with poor prognosis. We proposed and validated a novel, paradigm-shifting hypothesis that this region is associated with a set of microRNA genes-miR-3622, miR-3622b, miR-383-that are lost in PCa and play important mechanistic roles in PCa progression and metastasis. Extending our hypothesis, in this study, we evaluated the role of a microRNA gene located in chromosome 8p-miR-4288-by employing clinical samples and cell lines. Our data suggests that (i) miR-4288 is widely downregulated in primary prostate tumors and cell lines; (ii) miR-4288 expression is lost in metastatic castration-resistant PCa; (ii) miR-4288 downregulation is race-related PCa alteration that is prevalent in Caucasian patients and not in African Americans; (iii) in Caucasians, miR-4288 was found to be associated with increasing tumor grade and high serum prostate-specific antigen, suggesting that miR-4288 downregulation/loss may be associated with tumor progression specifically in Caucasians; (iv) miR-4288 possess significant potential as a molecular biomarker to predict aggressiveness/metastasis; and (v) miR-4288 is anti-proliferative, is anti-invasive and inhibits epithelial-to-mesenchymal transition; and (vi) miR-4288 directly represses expression of metastasis/invasion-associated genes MMP16 and ROCK1. Thus, the present study demonstrates a tumor suppressor role for a novel miRNA located with a frequently lost region in PCa, strengthening our hypothesis that this locus is causally related to PCa disease progression via loss of microRNA genes. Our study suggests that miR-4288 may be a novel biomarker and therapeutic target, particularly in Caucasians.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 8/genética , Genes Supressores de Tumor , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Adulto , Idoso , Apoptose , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Células Tumorais CultivadasRESUMO
Non-coding RNA (ncRNA) has been shown to regulate diverse cellular processes and functions through controlling gene expression. Long non-coding RNAs (lncRNAs) act as a competing endogenous RNAs (ceRNAs) where microRNAs (miRNAs) and lncRNAs regulate each other through their biding sites. Interactions of miRNAs and lncRNAs have been reported to trigger decay of the targeted lncRNAs and have important roles in target gene regulation. These interactions form complicated and intertwined networks. Certain lncRNAs encode miRNAs and small nucleolar RNAs (snoRNAs), and may regulate expression of these small RNAs as precursors. SnoRNAs have also been reported to be precursors for PIWI-interacting RNAs (piRNAs) and thus may regulate the piRNAs as a precursor. These miRNAs and piRNAs target messenger RNAs (mRNAs) and regulate gene expression. In this review, we will present and discuss these interactions, cross-talk, and co-regulation of ncRNAs and gene regulation due to these interactions.
Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , RNA não Traduzido/genética , Animais , Epistasia Genética , HumanosRESUMO
Cytochrome P450 1B1 (CYP1B1) converts xenobiotics to carcinogens and how lifestyle choices may interact with CYP1B1 polymorphisms and affect prostate cancer risk was assessed. Blood genomic DNA from a Caucasian population was analysed at polymorphic sites of the 5' untranslated region of CYP1B1 using TaqMan genotyping assays. Overall, drinker status and minor alleles at rs2551188, rs2567206 and rs10175368 were associated with prostate cancer. Linkage was observed between rs2551188, rs2567206, rs2567207 and rs10175368, and the G-C-T-G haplotype (major allele at respective sites) was decreased in cancer. Interestingly when classified by lifestyle factors, no associations of genotypes were found for non-smokers and non-drinkers, whereas on the contrary, minor type at rs2567206 and rs10175368 increased and major G-C-T-G decreased risk for cancer among smokers and drinkers. Interestingly, rs2551188, rs2567206 and rs10175368 minor genotypes correlated with increased tissue CYP1B1 as determined by immunohistochemistry. Further, rs10175368 enhanced luciferase activity and mobility shift show stronger binding of nuclear factor for the minor allele. These results demonstrate smoking and alcohol consumption to modify the risks of CYP1B1 polymorphisms for prostate cancer which may be through rs10175368, and this is of importance in understanding their role in the pathogenesis and as a biomarker for this disease.
Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Citocromo P-450 CYP1B1/genética , Interação Gene-Ambiente , Polimorfismo Genético , Neoplasias da Próstata/genética , Fumar/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/genética , Alelos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Expressão Gênica , Haplótipos , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Fatores de Risco , Fumar/genética , População BrancaRESUMO
Prostate cancer causes significant morbidity in men and metastatic disease is a major cause of cancer related deaths. Prostate metastasis is controlled by various cellular intrinsic and extrinsic factors, which are often under the regulatory control of various metastasis-associated genes. Given the dynamic nature of metastatic cancer cells, the various factors controlling this process are themselves regulated by microRNAs which are small non-coding RNAs. Significant research work has shown differential microRNA expression in primary and metastatic prostate cancer suggesting their importance in prostate pathogenesis. We will review the roles of different microRNAs in controlling the various steps in prostate metastasis.
Assuntos
MicroRNAs/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genéticaRESUMO
HOTAIR is a long non-coding RNA that interacts with the polycomb repressive complex and suppresses its target genes. HOTAIR has also been demonstrated to promote malignancy. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition process, and the expression of miR-141 is inversely correlated with tumorigenicity and invasiveness in several human cancers. We found that HOTAIR expression is inversely correlated to miR-141 expression in renal carcinoma cells. HOTAIR promotes malignancy, including proliferation and invasion, whereas miR-141 suppresses malignancy in human cancer cells. miR-141 binds to HOTAIR in a sequence-specific manner and suppresses HOTAIR expression and functions, including proliferation and invasion. Both HOTAIR and miR-141 were associated with the immunoprecipitated Ago2 (Argonaute2) complex, and the Ago2 complex cleaved HOTAIR in the presence of miR-141. These results demonstrate that HOTAIR is suppressed by miR-141 in an Ago2-dependent manner.
Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células HT29 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , MicroRNAs/metabolismo , Mutação , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de ZincoRESUMO
BACKGROUND: Cytochrome P450 1B1 (CYP1B1) has been shown to be up-regulated in many types of cancer including renal cell carcinoma (RCC). Several reports have shown that CYP1B1 can influence the regulation of tumor development; however, its role in RCC has not been well investigated. The aim of the present study was to determine the functional effects of CYP1B1 gene on tumorigenesis in RCC. METHODS: Expression of CYP1B1 was determined in RCC cell lines, and tissue microarrays of 96 RCC and 25 normal tissues. To determine the biological significance of CYP1B1 in RCC progression, we silenced the gene in Caki-1 and 769-P cells by RNA interference and performed various functional analyses. RESULTS: First, we confirmed that CYP1B1 protein expression was significantly higher in RCC cell lines compared to normal kidney tissue. This trend was also observed in RCC samples (p < 0.01). Interestingly, CYP1B1 expression was associated with tumor grade and stage. Next, we silenced the gene in Caki-1 and 769-P cells by RNA interference and performed various functional analyses to determine the biological significance of CYP1B1 in RCC progression. Inhibition of CYP1B1 expression resulted in decreased cell proliferation, migration and invasion of RCC cells. In addition, reduction of CYP1B1 induced cellular apoptosis in Caki-1. We also found that these anti-tumor effects on RCC cells caused by CYP1B1 depletion may be due to alteration of CDC20 and DAPK1 expression based on gene microarray and confirmed by real-time PCR. Interestingly, CYP1B1 expression was associated with CDC20 and DAPK1 expression in clinical samples. CONCLUSIONS: CYP1B1 may promote RCC development by inducing CDC20 expression and inhibiting apoptosis through the down-regulation of DAPK1. Our results demonstrate that CYP1B1 can be a potential tumor biomarker and a target for anticancer therapy in RCC.
Assuntos
Carcinoma de Células Renais/genética , Proteínas Cdc20/genética , Citocromo P-450 CYP1B1/genética , Proteínas Quinases Associadas com Morte Celular/genética , Neoplasias Renais/genética , Apoptose , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proteínas Cdc20/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Citocromo P-450 CYP1B1/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Regulação para CimaRESUMO
The cytochrome P450 1B1 (CYP1B1) enzyme activates xenobiotics to reactive forms as well as convert estradiol to 4-hydroxy-estradiol that has been shown to play a role in the carcinogenesis process of the kidney in male but not female animals. Prior reports show polymorphic variants of CYP1B1 to alter catalytic activity, and thus, we hypothesize that polymorphisms of the CYP1B1 gene are involved in the malignant transformation of the renal cell in men. The genetic distributions of five CYP1B1 polymorphisms were analyzed by polymerase chain reaction-restriction fragment length polymorphism in 480 normal healthy subjects and 403 sporadic renal cell carcinoma cases. All subjects were Caucasian men. The sites evaluated were codons 48 (C â G, Arg â Gly, rs10012), 119 (G â T, Ala â Ser, rs1056827), 432 (C â G, Leu â Val, rs1056836), 449 (C â T, Asp, rs1056837), and 453 (A â G, Asn â Ser, rs1800440). A trend was demonstrated for the 432 Val/Val (χ2, P = 0.06) and 449 T/T (χ2, P = 0.1) genotypes to play a protective role against renal cancer. Odds ratio (95 % confidence interval) for Val/Val compared to Leu/Leu at codon 432 was 0.65 (0.44-0.95) and T/T compared to C/C at codon 449 was 0.67 (0.45-0.99). Codons 432 and 449 were observed to be linked (D = 0.24), and haplotype involving 432 Val and 449 T was significantly reduced in cancer cases (P = 0.04). No association was found, however, when analyzing polymorphic sites with clinical stage of cancer. These results demonstrate polymorphisms of CYP1B1 to be associated with renal carcinogenesis and are of importance in understanding their role in the pathogenesis of renal cell carcinoma.
Assuntos
Carcinoma de Células Renais/genética , Citocromo P-450 CYP1B1/genética , Predisposição Genética para Doença/genética , Neoplasias Renais/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/enzimologia , Genótipo , Humanos , Neoplasias Renais/enzimologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Fatores de RiscoRESUMO
Wnt signaling pathways play important roles in tumorigenesis and are initiated by binding of Wnt to various receptors including frizzleds (FZDs). FZDs are one of several families of receptors comprised of FZD/LRP/ROR2/RYK in the Wnt signaling pathway. Expression of some FZD receptors are up regulated, thereby activating the Wnt signaling pathway and is correlated with cancer malignancy and patient outcomes (recurrence and survival) in many cancers. The FZD family contains ten genes in humans and their function has not been completely examined including the regulatory mechanisms of FZD genes in cancer. Knockdown of FZDs may suppress the Wnt signaling pathway resulting in decreased cell growth, invasion, motility and metastasis of cancer cells. Recently a number of microRNAs (miRNAs) have been identified and reported to be important in several cancers. MiRNAs regulate target gene expression at both the transcription and translation levels. The study of miRNA is a newly emerging field and promises to be helpful in understanding the pathogenesis of FZDs in cancer. In addition, miRNAs may be useful in regulating FZDs in cancer cells. Therefore, the aim of this review is to discuss current knowledge of the functional mechanisms of FZDs in cancer, including regulation by miRNAs and the potential for possible use of miRNAs and FZDs in future clinical applications.
Assuntos
Receptores Frizzled/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Receptores Frizzled/genética , Técnicas de Silenciamento de Genes , Humanos , Neoplasias/genéticaRESUMO
Our previous report revealed that the expression of Frizzled-7 (FZD7) in colorectal cancer (CRC) and its possible role in CRC progression. In this study we measured the expression levels of candidate FZD7 ligands, Wnt3 and Wnt11 in colon cancer cell lines (n = 7) and primary CRC tissues (n = 133) by quantitative RT-PCR. We also examined the functional effects of Wnt11 with the use of Wnt11 transfectants of colon cancer HCT-116 cells. Wnt11 transfectants showed the increased proliferation and migration/invasion activities compared to mock cells. Western blot analysis of transfectants revealed that phosphorylation of JNK and c-jun was increased after Wnt11 transfection. Wnt11 mRNA expression was significantly higher in the stage I, II, III, or IV tumor tissues than in non-tumor tissues (overall P < 0.003), while there was no significant difference in Wnt3 mRNA expression between tumor and non-tumor tissues. In addition, Wnt11 mRNA expression was significantly higher in patients with recurrence or death after surgery than in those with no recurrence (disease free) after surgery (P = 0.018). We also compared the expression levels of Wnt11 mRNA with those of FZD7 mRNA in the same CRC samples. Wnt11 mRNA expression was significantly higher in patients with higher FZD7 mRNA levels than in those with lower FZD7 mRNA levels (P = 0.0005). The expression levels of Wnt11 mRNA were correlated with those of FZD7 mRNA (P < 0.0001). These data suggest that Wnt11 may play an important role in CRC progression.
Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Movimento Celular/genética , Proliferação de Células , Colo/metabolismo , Neoplasias Colorretais/genética , Feminino , Receptores Frizzled/genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Fosforilação , RNA Interferente Pequeno , Valores de Referência , Via de Sinalização Wnt , Proteína Wnt3/metabolismoRESUMO
The aim of this project is to identify new therapeutic microRNAs (miRNAs) for von Hippel-Lindau (VHL)-inactivated renal cancer cells. We initially identified several potential miRNAs targeting CTNNB1 and MEK1 using several targets scan algorithms. Only miR-1826 was found to target CTNNB1 and MEK1. Therefore, we focused on miRNA-1826 and performed 3' untranslated region (UTR) luciferase assay, functional analyses and association study between miR-1826 expression and renal cancer patient outcomes. miR-1826 expression was significantly lower in renal cancer tissues compared with non-neoplastic areas and lower expression was significantly associated with overall shorter survival and earlier recurrence after radical nephrectomy. Following miR-1826 transfection, 3' UTR luciferase activity and protein expression of beta-catenin and MEK1 were significantly downregulated in renal cancer cells. Introduction of miR-1826 also inhibited renal cancer cell proliferation, invasion and migration. Additionally, miR-1826 promoted apoptosis and G(1) arrest in VHL-inactivated renal cancer cells. Knockdowns of CTNNB1 and MEK1 by small interfering RNAs reproduced the tumor-suppressive effect of miR-1826. Our data suggest that the miR-1826 plays an important role as a tumor suppressor by downregulating beta-catenin and MEK1 in VHL-inactivated renal cancers.
Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , MAP Quinase Quinase 1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , beta Catenina/genética , Adulto , Idoso , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Estudos de Associação Genética , Humanos , Rim/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Luciferases/metabolismo , MAP Quinase Quinase 1/biossíntese , MAP Quinase Quinase 1/metabolismo , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Interferência de RNA , RNA Interferente Pequeno , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , beta Catenina/biossíntese , beta Catenina/metabolismoRESUMO
The Wnt/beta-catenin (CTNNB1) and Ras-Raf-MEK-ERK signaling pathway play an important role in bladder cancer (BC) progression. Tumor-suppressive microRNAs (miRNAs) targeting these cancer pathways may provide a new therapeutic approach for BC. We initially identified miRNA-1826 potentially targeting CTNNB1, VEGFC and MEK1 using several target scan algorithms. Also 3' untranslated region luciferase activity and protein expression of these target genes were significantly downregulated in miR-1826-transfected BC cells (J82 and T24). The expression of miR-1826 was lower in BC tissues and inverse correlation of miR-1826 with several clinical parameters (pT, grade) was observed. Also the expression of miR-1826 was much lower in three BC cell lines (J82, T24 and TCCSUP) compared with a normal bladder cell line (SV-HUC-1). We then performed analyses to look at miR-1826 function and found that miR-1826 inhibited BC cell viability, invasion and migration. We also found increased apoptosis and G(1) cell cycle arrest in miR-1826-transfected BC cells. To examine whether the effect of miR-1826 was through CTNNB1 (beta-catenin) or MEK1 knockdown, we knocked down CTNNB1/MEK1 messenger RNA using a small interfering RNA (siRNA) technique. We observed that CTNNB1 or MEK1 siRNA knockdown resulted in effects similar to those with miR-1826 in BC cells. In conclusion, our data suggest that the miR-1826 plays an important role as tumor suppressor via CTNNB1/MEK1/VEGFC downregulation in BC.
Assuntos
MAP Quinase Quinase 1/antagonistas & inibidores , MicroRNAs/fisiologia , Neoplasias da Bexiga Urinária/genética , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Apoptose , Ciclo Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , MAP Quinase Quinase 1/genética , Masculino , MicroRNAs/genética , Invasividade Neoplásica , Transdução de Sinais , Transfecção , Fator C de Crescimento do Endotélio Vascular/genética , beta Catenina/genéticaRESUMO
We investigated the functional effects of microRNA-34a (miR-34a) on c-Myc transcriptional complexes in renal cell carcinoma. miR-34a down-regulated expression of multiple oncogenes including c-Myc by targeting its 3' untranslated region, which was revealed by luciferase reporter assays. miR-34a was also found to repress RhoA expression by suppressing the c-Myc-Skp2-Miz1 transcriptional complex that activates RhoA. Overexpression of c-Myc reversed miR-34a suppression of RhoA expression and inhibition of cell invasion, suggesting that miR-34a inhibits invasion by suppressing RhoA through c-Myc. miR-34a was also found to repress the c-Myc-P-TEFb transcription elongation complex, indicating one of the mechanisms by which miR-34a has profound effects on cellular functions. Our results demonstrate that miR-34a suppresses assembly and function of the c-Myc complex that activates or elongates transcription, indicating a novel role of miR-34a in the regulation of transcription by c-Myc.
Assuntos
Carcinoma de Células Renais/genética , Transformação Celular Neoplásica/genética , Neoplasias Renais/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regiões 3' não Traduzidas , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Transformação Celular Neoplásica/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Células Tumorais Cultivadas , Proteína rhoA de Ligação ao GTP/genéticaRESUMO
Long-term exposure to estrogen and its metabolites may play an important role in renal cell carcinogenesis. Catechol-O-methyltransferase (COMT) participates in the estrogen metabolism pathway by neutralizing toxic substances. Although reduced COMT activity has been suggested to be a risk factor for estrogen-associated cancers, no studies have investigated the biological significance of COMT in the pathogenesis of human renal cell cancers (RCCs). We initially found that COMT levels are significantly decreased in human RCC tissues and cells suggesting it plays a suppressive role in tumor development. However, transient overexpression of COMT has no functional effect on RCC cell lines. In contrast, when cells overexpressing COMT are treated with its substrate 4-hydroxyestradiol (4-OHE(2)), growth is inhibited by apoptotic cell death. We also found that COMT overexpression combined with 4-OHE(2) induces upregulation of growth arrest- and DNA damage-inducible protein α (GADD45α). We further show that downregulation of GADD45α by a small interfering RNA-mediated approach inhibits cell death, indicating the essential role of GADD45α in the underlying mechanism of COMT action in response to 4-OHE(2). Finally, 4-methoxyestradiol fully reproduces the antiproliferative function of COMT with 4-OHE(2) by promoting GADD45α induction. Together, these findings show that COMT in the presence of 4-OHE(2) prevents RCC cell proliferation by enhancing apoptosis and that GADD45α plays a critical role in the COMT-mediated inhibition of RCC.
Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Catecol O-Metiltransferase/metabolismo , Estradiol/análogos & derivados , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Catecol O-Metiltransferase/biossíntese , Catecol O-Metiltransferase/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Estradiol/metabolismo , Estradiol/farmacologia , Estrogênios de Catecol , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Regulação para Cima/efeitos dos fármacosRESUMO
The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.
Assuntos
Neoplasias Urológicas/metabolismo , Via de Sinalização Wnt , Animais , Antineoplásicos/farmacologia , Epigênese Genética , Humanos , MicroRNAs , Metástase Neoplásica , Neoplasias Urológicas/genética , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismoRESUMO
UNLABELLED: What's known on the subject? and What does the study add? The process of bladder regeneration with a bladder acellular matrix graft (BAMG) is thought to be accelerated by administration of vascular endothelial growth factor into the host bladder. In the present study, we showed that simultaneous implantation of bilateral ureters into a BAMG after a partial cystectomy is reasonable and provides an increased opportunity to the bio-scaffold for communication with host tissues from which a blood supply and stem cells will be generated. OBJECTIVE: ⢠To evaluate if the implantation of bilateral ureters into a bladder acellular matrix graft (BAMG) at the time of its implantation would enhance bladder regeneration in a partial substitution BAMG. MATERIALS AND METHODS: ⢠Partial cystectomies were performed under general anaesthesia in 12 pigs, followed by augmentation with a BAMG. ⢠Six (ureteric implantation group) also received simultaneous implantation of bilateral ureters into the BAMG, while the remaining six (control group) did not have ureteric implantation. ⢠In both groups, bladder regeneration was evaluated using endoscopic and histopathological methods at 1, 2, 4, and 8 weeks after implantation. RESULTS: ⢠At 1 week after BAMG implantation, there were significant inflammatory changes on the host bladder in both groups, while no significant endoscopic changes were seen on the BAMG luminal surfaces. ⢠At 2 weeks, inflammatory changes were diminished and epithelialisation on the BMAG was identified, especially near the host bladder in both groups. ⢠Similarly, epithelialisation on the BAMG near the implanted ureters was seen in the ureteric implantation group. ⢠At 4 and 8 weeks, epithelialisation remained in progress in both groups, although it was more active and expansive in the ureteric implantation group. CONCLUSIONS: ⢠In our porcine model, endoscopic and histopathological examinations showed that simultaneous implantation of bilateral ureters into a BAMG enhanced epithelialisation of the AMG. ⢠This new approach using host ureters and bladder as a potential source of bladder regeneration may provide for rapid and complete regeneration of a bladder substitute.