Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Ind Med ; 65(12): 975-984, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36268894

RESUMO

BACKGROUND: Firefighters perform strenuous work in hot environments, which may increase their risk of chronic kidney disease. The purpose of this study was to evaluate the risk of end-stage renal disease (ESRD) and types of ESRD among a cohort of US firefighters compared to the US general population, and to examine exposure-response relationships. METHODS: ESRD from 1977 through 2014 was identified through linkage with Medicare data. ESRD incidence in the cohort compared to the US population was evaluated using life table analyses. Associations of all ESRD, systemic ESRD, hypertensive ESRD, and diabetic ESRD with exposure surrogates (exposed days, fire runs, and fire hours) were examined in Cox proportional hazards models adjusted for attained age (the time scale), race, birth date, fire department, and employment duration. RESULTS: The incidence of all ESRD was less than expected (standardized incidence ratio (SIR) = 0.79; 95% confidence interval = 0.69-0.89, observed = 247). SIRs for ESRD types were not significantly increased. Positive associations of all ESRD, systemic ESRD, and hypertensive ESRD with exposed days were observed: however, 95% confidence intervals included one. CONCLUSIONS: We found little evidence of increased risk of ESRD among this cohort of firefighters. Limitations included the inability to evaluate exposure-response relationships for some ESRD types due to small observed numbers, the limitations of the surrogates of exposure, and the lack of information on more sensitive outcome measures for potential kidney effects.


Assuntos
Bombeiros , Falência Renal Crônica , Humanos , Idoso , Estados Unidos/epidemiologia , Incidência , Chicago/epidemiologia , Philadelphia/epidemiologia , São Francisco/epidemiologia , Medicare , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/etiologia
2.
Part Fibre Toxicol ; 18(1): 39, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711247

RESUMO

BACKGROUND: Growing industrial use of carbon nanotubes and nanofibers (CNT/F) warrants consideration of human health outcomes. CNT/F produces pulmonary, cardiovascular, and other toxic effects in animals along with a significant release of bioactive peptides into the circulation, the augmented serum peptidome. While epidemiology among CNT/F workers reports on few acute symptoms, there remains concern over sub-clinical CNT/F effects that may prime for chronic disease, necessitating sensitive health outcome diagnostic markers for longitudinal follow-up. METHODS: Here, the serum peptidome was assessed for its biomarker potential in detecting sub-symptomatic pathobiology among CNT/F workers using label-free data-independent mass spectrometry. Studies employed a stratified design between High (> 0.5 µg/m3) and Low (< 0.1 µg/m3) inhalable CNT/F exposures in the industrial setting. Peptide biomarker model building and refinement employed linear regression and partial least squared discriminant analyses. Top-ranked peptides were then sequence identified and evaluated for pathological-relevance. RESULTS: In total, 41 peptides were found to be highly discriminatory after model building with a strong linear correlation to personal CNT/F exposure. The top-five peptide model offered ideal prediction with high accuracy (Q2 = 0.99916). Unsupervised validation affirmed 43.5% of the serum peptidomic variance was attributable to CNT/F exposure. Peptide sequence identification reveals a predominant association with vascular pathology. ARHGAP21, ADAM15 and PLPP3 peptides suggest heightened cardiovasculature permeability and F13A1, FBN1 and VWDE peptides infer a pro-thrombotic state among High CNT/F workers. CONCLUSIONS: The serum peptidome affords a diagnostic window into sub-symptomatic pathology among CNT/F exposed workers for longitudinal monitoring of systemic health risks.


Assuntos
Nanofibras , Nanotubos de Carbono , Exposição Ocupacional , Proteínas ADAM , Biomarcadores , Humanos , Indústrias , Proteínas de Membrana , Nanotubos de Carbono/análise , Nanotubos de Carbono/toxicidade , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
3.
Part Fibre Toxicol ; 15(1): 22, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769147

RESUMO

BACKGROUND: Commercial use of carbon nanotubes and nanofibers (CNT/F) in composites and electronics is increasing; however, little is known about health effects among workers. We conducted a cross-sectional study among 108 workers at 12 U.S. CNT/F facilities. We evaluated chest symptoms or respiratory allergies since starting work with CNT/F, lung function, resting blood pressure (BP), resting heart rate (RHR), and complete blood count (CBC) components. METHODS: We conducted multi-day, full-shift sampling to measure background-corrected elemental carbon (EC) and CNT/F structure count concentrations, and collected induced sputum to measure CNT/F in the respiratory tract. We measured (nonspecific) fine and ultrafine particulate matter mass and count concentrations. Concurrently, we conducted physical examinations, BP measurement, and spirometry, and collected whole blood. We evaluated associations between exposures and health measures, adjusting for confounders related to lifestyle and other occupational exposures. RESULTS: CNT/F air concentrations were generally low, while 18% of participants had evidence of CNT/F in sputum. Respiratory allergy development was positively associated with inhalable EC (p=0.040) and number of years worked with CNT/F (p=0.008). No exposures were associated with spirometry-based metrics or pulmonary symptoms, nor were CNT/F-specific metrics related to BP or most CBC components. Systolic BP was positively associated with fine particulate matter (p-values: 0.015-0.054). RHR was positively associated with EC, at both the respirable (p=0.0074) and inhalable (p=0.0026) size fractions. Hematocrit was positively associated with the log of CNT/F structure counts (p=0.043). CONCLUSIONS: Most health measures were not associated with CNT/F. The positive associations between CNT/F exposure and respiratory allergies, RHR, and hematocrit counts may not be causal and require examination in other studies.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Exposição Ocupacional/análise , Sistema Respiratório/efeitos dos fármacos , Adulto , Idoso , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/farmacocinética , Biomarcadores/sangue , Contagem de Células Sanguíneas , Estudos Transversais , Feminino , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Nanofibras/análise , Nanotubos de Carbono/análise , Testes de Função Respiratória , Escarro/química , Inquéritos e Questionários
4.
J Occup Environ Hyg ; 15(1): 44-56, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053929

RESUMO

OBJECTIVE: Toxicology studies suggest that exposure to certain types of engineered nanomaterials (ENMs) may cause adverse health effects, but little is known about the workforce in the United States that produces or uses these materials. In addition, occupational exposure control strategies in this industry are not well characterized. This study identified U.S. ENM manufacturers and users (other than carbon nanotubes and nanofibers, which have been characterized elsewhere), determined workforce size, characterized types and quantities of materials used, occupational exposure control strategies, and the feasibility of occupational ENM exposure studies. METHODS: Eligible companies were identified and information was collected through phone surveys on nanomaterials produced or used, workforce size, location, work practices, and exposure control strategies. The companies were classified into groups for additional examinations. RESULTS: Forty-nine companies producing or using ENMs in the U.S. were identified. These companies employed at least 1,500 workers. Most companies produced or used some form of nanoscale metal. More than half of the eligible companies were suppliers for the coatings, composite materials, or general industries. Each company provided information about worker exposure reduction strategies through engineering controls, administrative controls, or personal protective equipment. Production-scale companies reported greater use of specific exposure control strategies for ENMs than laboratory-scale companies. CONCLUSIONS: Workplaces producing or using ENMs report using engineering and administrative controls as well as personal protective equipment to control worker exposure. Industrywide exposure assessment studies appear feasible due to workforce size. However, more effort must be taken to target industries using specific ENMs based on known toxicological effects and health risks.


Assuntos
Instalações Industriais e de Manufatura/estatística & dados numéricos , Nanoestruturas/estatística & dados numéricos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Humanos , Metais , Saúde Ocupacional/estatística & dados numéricos , Equipamento de Proteção Individual , Estados Unidos , Recursos Humanos , Local de Trabalho
5.
J Aerosol Sci ; 99: 157-162, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27546900

RESUMO

The early incorporation of exposure assessment can be invaluable to help design, prioritize, and interpret toxicological studies or outcomes. The sum total of the exposure assessment findings combined with preliminary toxicology results allows for exposure-informed toxicological study design and the findings can then be integrated, together with available epidemiologic data, to provide health effect relevance. With regard to engineered nanomaterial inhalation toxicology in particular, a single type of material (e.g. carbon nanotube, graphene) can have a vast array of physicochemical characteristics resulting in the potential for varying toxicities. To compound the matter, the methodologies necessary to establish a material adequate for in vivo exposure testing raises questions on the applicability of the outcomes. From insights gained from evaluating carbon nanotubes, we recommend the following integrated approach involving exposure-informed hazard assessment and hazard-informed exposure assessment especially for materials as diverse as engineered nanomaterials: 1) market-informed identification of potential hazards and potentially exposed populations, 2) initial toxicity screening to drive prioritized assessments of exposure, 3) development of exposure assessment-informed chronic and sub-chronic in vivo studies, and 4) conduct of exposure- and hazard-informed epidemiological studies.

6.
J Occup Environ Hyg ; 13(9): 708-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27027845

RESUMO

Engineered nanomaterial emission and exposure characterization studies have been completed at more than 60 different facilities by the National Institute for Occupational Safety and Health (NIOSH). These experiences have provided NIOSH the opportunity to refine an earlier published technique, the Nanoparticle Emission Assessment Technique (NEAT 1.0), into a more comprehensive technique for assessing worker and workplace exposures to engineered nanomaterials. This change is reflected in the new name Nanomaterial Exposure Assessment Technique (NEAT 2.0) which distinguishes it from NEAT 1.0. NEAT 2.0 places a stronger emphasis on time-integrated, filter-based sampling (i.e., elemental mass analysis and particle morphology) in the worker's breathing zone (full shift and task specific) and area samples to develop job exposure matrices. NEAT 2.0 includes a comprehensive assessment of emissions at processes and job tasks, using direct-reading instruments (i.e., particle counters) in data-logging mode to better understand peak emission periods. Evaluation of worker practices, ventilation efficacy, and other engineering exposure control systems and risk management strategies serve to allow for a comprehensive exposure assessment.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Nanoestruturas/análise , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/química , Humanos , Exposição por Inalação/análise , National Institute for Occupational Safety and Health, U.S. , Saúde Ocupacional , Medição de Risco , Estados Unidos , Ventilação , Local de Trabalho
7.
Occup Environ Med ; 72(9): 670-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26163543

RESUMO

OBJECTIVES: To construct a cohort-specific job-exposure matrix (JEM) using surrogate metrics of exposure for a cancer study on career firefighters from the Chicago, Philadelphia and San Francisco Fire Departments. METHODS: Departmental work history records, along with data on historical annual fire-runs and hours, were collected from 1950 to 2009 and coded into separate databases. These data were used to create a JEM based on standardised job titles and fire apparatus assignments using several surrogate exposure metrics to estimate firefighters' exposure to the combustion byproducts of fire. The metrics included duration of exposure (cumulative time with a standardised exposed job title and assignment), fire-runs (cumulative events of potential fire exposure) and time at fire (cumulative hours of potential fire exposure). RESULTS: The JEM consisted of 2298 unique job titles alongside 16,174 fire apparatus assignments from the three departments, which were collapsed into 15 standardised job titles and 15 standardised job assignments. Correlations were found between fire-runs and time at fires (Pearson coefficient=0.92), duration of exposure and time at fires (Pearson coefficient=0.85), and duration of exposure and fire-runs (Pearson coefficient=0.82). Total misclassification rates were found to be between 16-30% when using duration of employment as an exposure surrogate, which has been traditionally used in most epidemiological studies, compared with using the duration of exposure surrogate metric. CONCLUSIONS: The constructed JEM successfully differentiated firefighters based on gradient levels of potential exposure to the combustion byproducts of fire using multiple surrogate exposure metrics.


Assuntos
Bombeiros , Incêndios , Neoplasias/etiologia , Doenças Profissionais/etiologia , Exposição Ocupacional/análise , Ocupações , Chicago , Humanos , Masculino , Philadelphia , Estudos Retrospectivos , São Francisco
8.
Occup Environ Med ; 72(10): 699-706, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25673342

RESUMO

OBJECTIVES: To examine exposure-response relationships between surrogates of firefighting exposure and select outcomes among previously studied US career firefighters. METHODS: Eight cancer and four non-cancer outcomes were examined using conditional logistic regression. Incidence density sampling was used to match each case to 200 controls on attained age. Days accrued in firefighting assignments (exposed-days), run totals (fire-runs) and run times (fire-hours) were used as exposure surrogates. HRs comparing 75th and 25th centiles of lagged cumulative exposures were calculated using loglinear, linear, log-quadratic, power and restricted cubic spline general relative risk models. Piecewise constant models were used to examine risk differences by time since exposure, age at exposure and calendar period. RESULTS: Among 19,309 male firefighters eligible for the study, there were 1333 cancer deaths and 2609 cancer incidence cases. Significant positive associations between fire-hours and lung cancer mortality and incidence were evident. A similar relation between leukaemia mortality and fire-runs was also found. The lung cancer associations were nearly linear in cumulative exposure, while the association with leukaemia mortality was attenuated at higher exposure levels and greater for recent exposures. Significant negative associations were evident for the exposure surrogates and colorectal and prostate cancers, suggesting a healthy worker survivor effect possibly enhanced by medical screening. CONCLUSIONS: Lung cancer and leukaemia mortality risks were modestly increasing with firefighter exposures. These findings add to evidence of a causal association between firefighting and cancer. Nevertheless, small effects merit cautious interpretation. We plan to continue to follow the occurrence of disease and injury in this cohort.


Assuntos
Causas de Morte , Bombeiros/estatística & dados numéricos , Leucemia/epidemiologia , Neoplasias Pulmonares/epidemiologia , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Adulto , Distribuição por Idade , Idoso , Chicago , Estudos de Coortes , Humanos , Incidência , Leucemia/etiologia , Leucemia/fisiopatologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/epidemiologia , Doenças Profissionais/fisiopatologia , Philadelphia , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco , São Francisco , Análise de Sobrevida
9.
Ann Occup Hyg ; 59(6): 705-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25851309

RESUMO

Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 µg m(-3) at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 µg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF.


Assuntos
Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Humanos , Indústrias , Exposição por Inalação/análise , Microscopia Eletrônica de Transmissão , National Institute for Occupational Safety and Health, U.S. , Tamanho da Partícula , Estados Unidos
10.
J Occup Environ Hyg ; 12(1): 69-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25093252

RESUMO

Exposure to engineered nanomaterials (substances with at least one dimension of 1-100 nm) has been of increased interest, with the recent growth in production and use of nanomaterials worldwide. Various organizations have recommended methods to minimize exposure to engineered nanomaterials. The purpose of this study was to evaluate available data to examine the extent to which studied U.S. companies (which represent a small fraction of all companies using certain forms of engineered nanomaterials) follow the guidelines for reducing occupational exposures to engineered nanomaterials that have been issued by the National Institute for Occupational Safety and Health (NIOSH) and other organizations. Survey data, field reports, and field notes for all NIOSH nanomaterial exposure assessments conducted between 2006 and 2011 were collected and reviewed to: (1) determine the level of adoption of precautionary guidance on engineering controls and personal protective equipment (PPE), and (2) evaluate the reliability of companies' self-reported use of engineering controls and PPE. Use of PPE was observed among 89% [95% confidence interval (CI): 76%-96%] of 46 visited companies, and use of containment-based engineering controls for at least some processes was observed among 83% (95% CI: 76%-96%). In on-site evaluations, more than 90% of the 16 engineered carbonaceous nanomaterial companies that responded to an industrywide survey were observed to be using engineering controls and PPE as reported or more stringently than reported. Since PPE use was slightly more prevalent than engineering controls, better communication may be necessary to reinforce the importance of the hierarchy of controls. These findings may also be useful in conducting exposure assessment and epidemiologic research among U.S. workers handling nanomaterials.


Assuntos
Nanoestruturas , Exposição Ocupacional/prevenção & controle , Equipamentos de Proteção/estatística & dados numéricos , Gestão de Riscos/métodos , Carbono , Humanos , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/normas , Exposição Ocupacional/estatística & dados numéricos , Gestão de Riscos/normas , Estados Unidos , Local de Trabalho
11.
Occup Environ Med ; 71(6): 388-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24142974

RESUMO

OBJECTIVES: To examine mortality patterns and cancer incidence in a pooled cohort of 29 993 US career firefighters employed since 1950 and followed through 2009. METHODS: Mortality and cancer incidence were evaluated by life table methods with the US population referent. Standardised mortality (SMR) and incidence (SIR) ratios were determined for 92 causes of death and 41 cancer incidence groupings. Analyses focused on 15 outcomes of a priori interest. Sensitivity analyses were conducted to examine the potential for significant bias. RESULTS: Person-years at risk totalled 858 938 and 403 152 for mortality and incidence analyses, respectively. All-cause mortality was at expectation (SMR=0.99, 95% CI 0.97 to 1.01, n=12 028). There was excess cancer mortality (SMR=1.14, 95% CI 1.10 to 1.18, n=3285) and incidence (SIR=1.09, 95% CI 1.06 to 1.12, n=4461) comprised mainly of digestive (SMR=1.26, 95% CI 1.18 to 1.34, n=928; SIR=1.17, 95% CI 1.10 to 1.25, n=930) and respiratory (SMR=1.10, 95% CI 1.04 to 1.17, n=1096; SIR=1.16, 95% CI 1.08 to 1.24, n=813) cancers. Consistent with previous reports, modest elevations were observed in several solid cancers; however, evidence of excess lymphatic or haematopoietic cancers was lacking. This study is the first to report excess malignant mesothelioma (SMR=2.00, 95% CI 1.03 to 3.49, n=12; SIR=2.29, 95% CI 1.60 to 3.19, n=35) among US firefighters. Results appeared robust under differing assumptions and analytic techniques. CONCLUSIONS: Our results provide evidence of a relation between firefighting and cancer. The new finding of excess malignant mesothelioma is noteworthy, given that asbestos exposure is a known hazard of firefighting.


Assuntos
Neoplasias do Sistema Digestório/etiologia , Bombeiros , Neoplasias Pulmonares/etiologia , Mesotelioma/etiologia , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Neoplasias do Sistema Respiratório/etiologia , Adulto , Idoso , Amianto/efeitos adversos , Causas de Morte , Chicago/epidemiologia , Estudos de Coortes , Neoplasias do Sistema Digestório/epidemiologia , Neoplasias do Sistema Digestório/mortalidade , Feminino , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/mortalidade , Masculino , Mesotelioma/epidemiologia , Mesotelioma/mortalidade , Mesotelioma Maligno , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/etiologia , Doenças Profissionais/epidemiologia , Doenças Profissionais/mortalidade , Philadelphia/epidemiologia , Neoplasias do Sistema Respiratório/epidemiologia , Neoplasias do Sistema Respiratório/mortalidade , São Francisco/epidemiologia
12.
Ann Work Expo Health ; 68(8): 846-858, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39141417

RESUMO

BACKGROUND: In studies of occupational health, longitudinal environmental exposure, and biomonitoring data are often subject to right skewing and left censoring, in which measurements fall below the limit of detection (LOD). To address right-skewed data, it is common practice to log-transform the data and model the geometric mean, assuming a log-normal distribution. However, if the transformed data do not follow a known distribution, modeling the mean of exposure may result in bias and reduce efficiency. In addition, when examining longitudinal data, it is possible that certain covariates may vary over time. OBJECTIVE: To develop predictive quantile regression models to resolve the issues of left censoring and time-dependent covariates and to quantitatively evaluate if previous and current covariates can predict current and/or future exposure levels. METHODS: To address these gaps, we suggested incorporating different substitution approaches into quantile regression and utilizing a method for selecting a working type of time dependency for covariates. RESULTS: In a simulation study, we demonstrated that, under different types of time-dependent covariates, the approach of multiple random value imputation outperformed the other approaches. We also applied our methods to a carbon nanotube and nanofiber exposure study. The dependent variables are the left-censored mass of elemental carbon at both the respirable and inhalable aerosol size fractions. In this study, we identified some potential time-dependent covariates with respect to worker-level determinants and job tasks. CONCLUSION: Time dependency for covariates is rarely accounted for when analyzing longitudinal environmental exposure and biomonitoring data with values less than the LOD through predictive modeling. Mistreating the time-dependency as time-independency will lead to an efficiency loss of regression parameter estimation. Therefore, we addressed time-varying covariates in longitudinal exposure and biomonitoring data with left-censored measurements and illustrated an entire conditional distribution through different quantiles.


Assuntos
Nanofibras , Nanotubos de Carbono , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Nanotubos de Carbono/análise , Estudos Longitudinais , Análise de Regressão , Limite de Detecção , Monitoramento Ambiental/métodos , Fatores de Tempo , Poluentes Ocupacionais do Ar/análise
13.
Ann Occup Hyg ; 57(3): 328-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23100605

RESUMO

UNLABELLED: RESEARCH SIGNIFICANCE: Toxicological evidence suggests the potential for a wide range of health effects from exposure to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). To date, there has been much focus on the use of direct-reading instruments (DRIs) to assess multiple airborne exposure metrics for potential exposures to CNTs and CNFs due to their ease of use and ability to provide instantaneous results. Still, uncertainty exists in the usefulness and interpretation of the data. To address this gap, air-monitoring was conducted at six sites identified as CNT and CNF manufacturers or users and results were compared with filter-based metrics. METHODS: Particle number, respirable mass, and active surface area concentrations were monitored with a condensation particle counter, a photometer, and a diffusion charger, respectively. The instruments were placed on a mobile cart and used as area monitors in parallel with filter-based elemental carbon (EC) and electron microscopy samples. Repeat samples were collected on consecutive days, when possible, during the same processes. All instruments in this study are portable and routinely used for industrial hygiene sampling. RESULTS: Differences were not observed among the various sampled processes compared with concurrent indoor or outdoor background samples while examining the different DRI exposure metrics. Such data were also inconsistent with results for filter-based samples collected concurrently at the same sites [Dahm MM, Evans DE, Schubauer-Berigan MK et al. (2012) Occupational exposure assessment in CNT and nanofiber primary and secondary manufacturers. Ann Occup Hyg; 56: 542-56]. Significant variability was seen between these processes as well as the indoor and outdoor backgrounds. However, no clear pattern emerged linking the DRI results to the EC or the microscopy data (CNT and CNF structure counts). CONCLUSIONS: Overall, no consistent trends were seen among similar processes at the various sites. The DRI instruments employed were limited in their usefulness in assessing and quantifying potential exposures at the sampled sites but were helpful for hypothesis generation, control technology evaluations, and other air quality issues. The DRIs employed are nonspecific, aerosol monitors, and, therefore, subject to interferences. As such, it is necessary to collect samples for analysis by more selective, time-integrated, laboratory-based methods to confirm and quantify exposures.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanofibras/análise , Exposição Ocupacional/análise , Carbono/análise , Monitoramento Ambiental , Humanos , Exposição por Inalação/análise , Exposição por Inalação/prevenção & controle , Microscopia Eletrônica de Transmissão , Nanoestruturas/análise , Nanotubos de Carbono/toxicidade , Exposição Ocupacional/prevenção & controle , Saúde Ocupacional
14.
Ann Occup Hyg ; 56(5): 542-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22156567

RESUMO

UNLABELLED: RESEARCH SIGNIFICANCE: Toxicological evidence suggests the potential for a wide range of health effects, which could result from exposure to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). The National Institute for Occupational Safety and Health (NIOSH) has proposed a recommended exposure limit (REL) for CNTs/CNFs at the respirable size fraction. The current literature is lacking exposure information, with few studies reporting results for personal breathing zone (PBZ) samples in occupational settings. To address this gap, exposure assessments were conducted at six representative sites identified as CNT/CNF primary or secondary manufacturers. METHODS: Personal and area filter-based samples were collected for both the inhalable mass concentration and the respirable mass concentration of elemental carbon (EC) as well as CNT structure count analysis by transmission electron microscopy to assess exposures. When possible, full-shift PBZ samples were collected; area samples were collected on a task-based approach. RESULTS: The vast majority of samples collected in this study were below the proposed REL (7 µg m(-3)). Two of the three secondary manufacturers' surveyed found concentrations above the proposed REL. None of the samples collected at primary manufacturers were found to be above the REL. Visual and microscopy-based evidence of CNTs/CNFs were found at all sites, with the highest CNT/CNF structure counts being found in samples collected at secondary manufacturing sites. The statistical correlations between the filter-based samples for the mass concentration of EC and CNT structure counts were examined. A general trend was found with a P-value of 0.01 and a corresponding Pearson correlation coefficient of 0.44. CONCLUSIONS: CNT/CNF concentrations were above the proposed NIOSH REL for PBZ samples in two secondary manufacturing facilities that use these materials for commercial applications. These samples were collected during dry powder handling processes, such as mixing and weighing, using fairly large quantities of CNTs/CNFs.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Aerossóis/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Animais , Filtração , Humanos , Indústrias/normas , Indústrias/estatística & dados numéricos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/estatística & dados numéricos , Limite de Detecção , Camundongos , Microscopia Eletrônica de Transmissão , Nanofibras/efeitos adversos , Nanotubos de Carbono/efeitos adversos , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/normas , Exposição Ocupacional/estatística & dados numéricos , Tamanho da Partícula , Estados Unidos
15.
Am J Ind Med ; 55(5): 395-411, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22392774

RESUMO

There is still uncertainty about the potential health hazards of carbon nanotubes (CNTs) particularly involving carcinogenicity. However, the evidence is growing that some types of CNTs and nanofibers may have carcinogenic properties. The critical question is that while the carcinogenic potential of CNTs is being further investigated, what steps should be taken to protect workers who face exposure to CNTs, current and future, if CNTs are ultimately found to be carcinogenic? This paper addresses five areas to help focus action to protect workers: (i) review of the current evidence on the carcinogenic potential of CNTs; (ii) role of physical and chemical properties related to cancer development; (iii) CNT doses associated with genotoxicity in vitro and in vivo; (iv) workplace exposures to CNT; and (v) specific risk management actions needed to protect workers.


Assuntos
Dano ao DNA , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Neoplasias/etiologia , Exposição Ocupacional/efeitos adversos , Fibrose Pulmonar/induzido quimicamente , Animais , Humanos , Exposição por Inalação/prevenção & controle , Pulmão/patologia , Nanotubos de Carbono/química , Exposição Ocupacional/prevenção & controle , Gestão de Riscos
16.
Curr Environ Health Rep ; 8(3): 223-234, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34101152

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to consolidate exposure assessment methods for occupational research on engineered nanomaterials (ENMs) published within the past 5 years (2015-2020). RECENT FINDINGS: The three ENMs that generated the highest volume of new research include titanium dioxide, graphene, and aluminum oxide. A multi-metric approach, using both online and offline instruments and analyses, has been found to be a useful method to characterize ENM workplace exposures and was commonly used in the recently published literature. Particle number concentration was the most common online exposure metric used, followed by the metrics of mass and surface area. There are currently no consensus methods for offline analyses of most ENMs. Researchers generally used gravimetric or elemental analyses for carbonaceous nanomaterials, titanium dioxide, and other nanometals, but there was little overlap between other ENM materials reviewed. Using biological markers of exposure, such as urinary oxidative stress biomarkers, as an indication of chronic exposure may also be useful for some ENMs and should be further researched. Generally, similar online instrumentation and offline electron microscopy methods were used for all ENMs. However, this consistency was not observed for offline mass analysis methods within specific ENMs. Consolidation of the most recent methods and results of exposure assessments within this broad material category can guide researchers toward future areas of study. Establishing consensus methods of exposure assessment for each individual ENM is crucial to characterizing workplace exposures, pooling data to fully understand their associated risks, and developing useful occupational exposure limits.


Assuntos
Nanoestruturas , Exposição Ocupacional , Humanos , Nanoestruturas/toxicidade , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Local de Trabalho
17.
J Int Soc Respir Prot ; 37(1): 52-60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508390

RESUMO

During epidemics and pandemics healthcare personnel (HCP) are on the front line of disease containment and mitigation. Personal protective equipment (PPE), such as NIOSH-approved N95 filtering facepiece respirators (FFRs), serve an important role in minimizing HCP risks and are in high demand during public health emergencies. Because PPE demand can exceed supply, various public health strategies have been developed to reduce the rate of PPE consumption as supply dwindles. Extended use and limited reuse of N95 FFRs are strategies advocated by many governmental agencies used to increase the number of times a device can be used. Increased use of respirators designed for reuse-such as powered air-purifying respirators (PAPRs) and elastomeric half-mask and full facepiece air-purifying respirators- is another option designed to reduce the continuous need for new devices as the daily need for respirator use increases. Together, these strategies are designed to reduce the number of PPE units that must be discarded daily and, therefore, extend the longevity of available supply. The purpose of this paper is to theoretically estimate the impact of extended use and limited reuse strategies for N95 FFRs and the increased use of reusable respirator options on PPE consumed. The results suggest that a considerable reduction in PPE consumption would result from extended use and limited reuse of N95 FFRs and the increased use of respirators designed for reuse; however, the practical benefits must be balanced with the risks and economic costs. In addition, extended use and reuse strategies must be accompanied by proper procedures to reduce risk. The study is designed to support epidemic and pandemic PPE supply and demand planning efforts.

18.
Nanotoxicology ; 14(3): 404-419, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031476

RESUMO

The objective of this study was to evaluate the association between carbon nanotube and nanofiber (CNT/F) exposure and ex vivo responses of whole blood challenged with secondary stimulants, adjusting for potential confounders, in a cross-sectional study of 102 workers. Multi-day exposure was measured by CNT/F structure count (SC) and elemental carbon (EC) air concentrations. Demographic, lifestyle and other occupational covariate data were obtained via questionnaire. Whole blood collected from each participant was incubated for 18 hours with and without two microbial stimulants (lipopolysaccharide/LPS and staphylococcal enterotoxin type B/SEB) using TruCulture technology to evaluate immune cell activity. Following incubation, supernatants were preserved and analyzed for protein concentrations. The stimulant:null response ratio for each individual protein was analyzed using multiple linear regression, followed by principal component (PC) analysis to determine whether patterns of protein response were related to CNT/F exposure. Adjusting for confounders, CNT/F metrics (most strongly, the SC-based) were significantly (p < 0.05) inversely associated with stimulant:null ratios of several individual biomarkers: GM-CSF, IFN-γ, interleukin (IL)-2, IL-4, IL-5, IL-10, IL-17, and IL-23. CNT/F metrics were significantly inversely associated with PC1 (a weighted mean of most biomarkers, explaining 25% of the variance in the protein ratios) and PC2 (a biomarker contrast, explaining 14%). Among other occupational exposures, only solvent exposure was significant (inversely related to PC2). CNT/F exposure metrics were uniquely related to stimulant responses in challenged whole blood, illustrating reduced responsiveness to a secondary stimulus. This approach, if replicated in other exposed populations, may present a relatively sensitive method to evaluate human response to CNT/F or other occupational exposures.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Citocinas/sangue , Exposição por Inalação/efeitos adversos , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Exposição Ocupacional/efeitos adversos , Adulto , Poluentes Ocupacionais do Ar/análise , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Exposição por Inalação/análise , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Análise de Componente Principal , Escarro/química , Escarro/imunologia
19.
Ann Work Expo Health ; 63(2): 158-172, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30715150

RESUMO

BACKGROUND: Recent cross-sectional epidemiologic studies have examined the association between human health effects and carbon nanotube and nanofiber (CNT/F) workplace exposures. However, due to the latency of many health effects of interest, cohort studies with sufficient follow-up will likely be needed. The objective of this study was to identify workplace determinants that contribute to exposure and develop predictive models to estimate CNT/F exposures for future use in epidemiologic studies. METHODS: Exposure measurements were compiled from 15 unique facilities for the metrics of elemental carbon (EC) mass at both the respirable and inhalable aerosol size fractions as well as a quantitative analysis performed by transmission electron microscopy (TEM). These metrics served as the dependent variables in model development. Repeated personal samples were collected from most of the 127 CNT/F worker participants for 252 total observations. Determinants were categorized as company-level or worker-level and used to describe the exposure relationship within the dependent variables. The influence of determinants on variance components was explored using mixed linear models that utilized a backwards stepwise selection process with a lowering of the AIC for model determinant selection. Additional ridge regression models were created that examined predictive performance with and without all two-way interactions. Cross-validation was performed on each model to evaluate the generalizability of its predictive capabilities while predictive performance was evaluated according to the corresponding R2 value and root mean square error (RMSE). RESULTS: Determinants at the company-level that increased exposure included an inadequate or semi-adequate engineering control rating, increasing average CNT/F diameter/length, daily quantities of material handled from 101 g to >1 kg and >1 kg, the use of CNF materials, the industry type of hybrid producer/user, and the expert assessment of a high exposure potential. Worker-level determinants associated with higher exposure included handling the dry-powdered form of CNT/F, handling daily quantities of material >1 kg, direct/indirect exposure, having the job title of engineer, using a respirator, using a ventilated or unventilated enclosure, and the job task of powder handling. The mixed linear models explained >60% of the total variance when using all company- and worker-level determinants to create the three exposure models. The cross-validated RMSE values for each of the three mixed models ranged from 2.50 to 4.23. Meanwhile, the ridge regression models, without all two-way interactions, estimated cross-validated RMSE values of 2.85, 2.23, and 2.76 for the predictive models of inhalable EC, respirable EC, and TEM, respectively. CONCLUSIONS: The ridge regression models demonstrated the best performance for predicting exposures to CNT/F for each exposure metric, although they only provided a modest predictive capability. Therefore, it was concluded that the models alone would not be adequate in predicting workplace exposures and would need to be integrated with other methods.


Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Local de Trabalho/normas , Estudos Transversais , Monitoramento Ambiental/métodos , Humanos , Indústrias , Microscopia Eletrônica de Transmissão
20.
Work ; 62(3): 373-382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856143

RESUMO

BACKGROUND: More than 13 million employees are working in the public education sector which includes more than just teachers in the United States. This industry sector also employs custodians, maintenance, and administration. To date, there is very limited information about the type and frequency of injuries for these employees. OBJECTIVE: To identify injury trends related to frequency and severity for different occupational injuries in a large urban school district. METHODS: Between 2014-2015, school district employees reported a total of 598 occupational injuries. Initial analysis of the data provided the frequency of injuries overall and for individual occupational categories. The Severity Index provides a score for job category and injury type based on severity and frequency. RESULTS: Overall, the Slip, Trip and Fall category had the highest frequency, followed by Combative Situations, and Over-exertion. Teacher and Para-professional workers experienced the greatest number of injuries with violence being the most frequent cause. Based on the Severity Index, Over-exertion was identified as the primary exposure concern for Custodians, while Slip, Trip and Fall category had the greatest impact on Building Engineers. CONCLUSIONS: With the diversity of negative outcomes, the administration will need targeted interventions for the various professions represented in the school systems. The injury severity profile indicates non-teachers should be a high priority for interventions with over-exertion and slips, trips and falls leading the risk.


Assuntos
Traumatismos Ocupacionais/epidemiologia , Instituições Acadêmicas/estatística & dados numéricos , Acidentes por Quedas/estatística & dados numéricos , Humanos , Remoção/efeitos adversos , Meio-Oeste dos Estados Unidos/epidemiologia , Setor Público/organização & administração , Setor Público/estatística & dados numéricos , Retorno ao Trabalho/estatística & dados numéricos , Instituições Acadêmicas/organização & administração , Índice de Gravidade de Doença , Violência/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA