Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7844): 47-56, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536649

RESUMO

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Assuntos
Biotecnologia/métodos , Biotecnologia/tendências , Celulose/química , Nanoestruturas/química , Desenvolvimento Sustentável/tendências , Materiais Biocompatíveis/química , Géis/química , Humanos , Porosidade
2.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35976049

RESUMO

A critical challenge in genetic diagnostics is the assessment of genetic variants associated with diseases, specifically variants that fall out with canonical splice sites, by altering alternative splicing. Several computational methods have been developed to prioritize variants effect on splicing; however, performance evaluation of these methods is hampered by the lack of large-scale benchmark datasets. In this study, we employed a splicing-region-specific strategy to evaluate the performance of prediction methods based on eight independent datasets. Under most conditions, we found that dbscSNV-ADA performed better in the exonic region, S-CAP performed better in the core donor and acceptor regions, S-CAP and SpliceAI performed better in the extended acceptor region and MMSplice performed better in identifying variants that caused exon skipping. However, it should be noted that the performances of prediction methods varied widely under different datasets and splicing regions, and none of these methods showed the best overall performance with all datasets. To address this, we developed a new method, machine learning-based classification of splice sites variants (MLCsplice), to predict variants effect on splicing based on individual methods. We demonstrated that MLCsplice achieved stable and superior prediction performance compared with any individual method. To facilitate the identification of the splicing effect of variants, we provided precomputed MLCsplice scores for all possible splice sites variants across human protein-coding genes (http://39.105.51.3:8090/MLCsplice/). We believe that the performance of different individual methods under eight benchmark datasets will provide tentative guidance for appropriate method selection to prioritize candidate splice-disrupting variants, thereby increasing the genetic diagnostic yield.


Assuntos
Processamento Alternativo , Splicing de RNA , Biologia Computacional/métodos , Éxons , Humanos , Aprendizado de Máquina , Mutação
3.
Nature ; 554(7691): 224-228, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420466

RESUMO

Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.


Assuntos
Madeira/química , Ligas/química , Parede Celular/química , Celulose/química , Temperatura Alta , Lignina/química , Lignina/isolamento & purificação , Metais/química , Peso Molecular , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Hidróxido de Sódio/química , Sulfitos/química , Resistência à Tração , Madeira/classificação
4.
Clin Oral Investig ; 28(3): 198, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448657

RESUMO

OBJECTIVES: This study aimed to use all permanent teeth as the target and establish an automated dental age estimation method across all developmental stages of permanent teeth, accomplishing all the essential steps of tooth determination, tooth development staging, and dental age assessment. METHODS: A three-step framework for automatically estimating dental age was developed for children aged 3 to 15. First, a YOLOv3 network was employed to complete the tasks of tooth localization and numbering on a digital orthopantomogram. Second, a novel network named SOS-Net was established for accurate tooth development staging based on a modified Demirjian method. Finally, the dental age assessment procedure was carried out through a single-group meta-analysis utilizing the statistical data derived from our reference dataset. RESULTS: The performance tests showed that the one-stage YOLOv3 detection network attained an overall mean average precision 50 of 97.50 for tooth determination. The proposed SOS-Net method achieved an average tooth development staging accuracy of 82.97% for a full dentition. The dental age assessment validation test yielded an MAE of 0.72 years with a full dentition (excluding the third molars) as its input. CONCLUSIONS: The proposed automated framework enhances the dental age estimation process in a fast and standard manner, enabling the reference of any accessible population. CLINICAL RELEVANCE: The tooth development staging network can facilitate the precise identification of permanent teeth with abnormal growth, improving the effectiveness and comprehensiveness of dental diagnoses using pediatric orthopantomograms.


Assuntos
Aprendizado Profundo , Humanos , Criança , Dente Serotino , Odontogênese , Radiografia Panorâmica
5.
Proc Natl Acad Sci U S A ; 117(12): 6316-6322, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156723

RESUMO

Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional "trial-and-error" experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.

6.
Proc Natl Acad Sci U S A ; 115(15): 3770-3775, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581262

RESUMO

The increasing demands for efficient and clean energy-storage systems have spurred the development of Li metal batteries, which possess attractively high energy densities. For practical application of Li metal batteries, it is vital to resolve the intrinsic problems of Li metal anodes, i.e., the formation of Li dendrites, interfacial instability, and huge volume changes during cycling. Utilization of solid-state electrolytes for Li metal anodes is a promising approach to address those issues. In this study, we use a 3D garnet-type ion-conductive framework as a host for the Li metal anode and study the plating and stripping behaviors of the Li metal anode within the solid ion-conductive host. We show that with a solid-state ion-conductive framework and a planar current collector at the bottom, Li is plated from the bottom and rises during deposition, away from the separator layer and free from electrolyte penetration and short circuit. Owing to the solid-state deposition property, Li grows smoothly in the pores of the garnet host without forming Li dendrites. The dendrite-free deposition and continuous rise/fall of Li metal during plating/stripping in the 3D ion-conductive host promise a safe and durable Li metal anode. The solid-state Li anode shows stable cycling at 0.5 mA cm-2 for 300 h with a small overpotential, showing a significant improvement compared with reported Li anodes with ceramic electrolytes. By fundamentally eliminating the dendrite issue, the solid Li metal anode shows a great potential to build safe and reliable Li metal batteries.

7.
Nat Mater ; 18(6): 608-613, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30911121

RESUMO

Converting low-grade heat into useful electricity requires a technology that is efficient and cost effective. Here, we demonstrate a cellulosic membrane that relies on sub-nanoscale confinement of ions in oxidized and aligned cellulose molecular chains to enhance selective diffusion under a thermal gradient. After infiltrating electrolyte into the cellulosic membrane and applying an axial temperature gradient, the ionic conductor exhibits a thermal gradient ratio (analogous to the Seebeck coefficient in thermoelectrics) of 24 mV K-1-more than twice the highest value reported until now. We attribute the enhanced thermally generated voltage to effective sodium ion insertion into the charged molecular chains of the cellulosic membrane, which consists of type II cellulose, while this process does not occur in natural wood or type I cellulose. With this material, we demonstrate a flexible and biocompatible heat-to-electricity conversion device via nanoscale engineering based on sustainable materials that can enable large-scale manufacture.

8.
Proc Natl Acad Sci U S A ; 114(14): 3584-3589, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320936

RESUMO

Lithium metal anode with the highest capacity and lowest anode potential is extremely attractive to battery technologies, but infinite volume change during the Li stripping/plating process results in cracks and fractures of the solid electrolyte interphase, low Coulombic efficiency, and dendritic growth of Li. Here, we use a carbonized wood (C-wood) as a 3D, highly porous (73% porosity) conductive framework with well-aligned channels as Li host material. We discovered that molten Li metal can infuse into the straight channels of C-wood to form a Li/C-wood electrode after surface treatment. The C-wood channels function as excellent guides in which the Li stripping/plating process can take place and effectively confine the volume change that occurs. Moreover, the local current density can be minimized due to the 3D C-wood framework. Therefore, in symmetric cells, the as-prepared Li/C-wood electrode presents a lower overpotential (90 mV at 3 mA⋅cm-2), more-stable stripping/plating profiles, and better cycling performance (∼150 h at 3 mA⋅cm-2) compared with bare Li metal electrode. Our findings may open up a solution for fabricating stable Li metal anode, which further facilitates future application of high-energy-density Li metal batteries.

9.
J Cell Mol Med ; 23(7): 4770-4778, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087496

RESUMO

Thyroid carcinoma is the most common endocrine malignancy. Surgery, post-operative selective iodine-131 and thyroid hormone suppression were the most common methods for the therapy of thyroid carcinoma. Although most patients with differentiated thyroid carcinoma (DTC) showed positive response for these therapeutic methods, some patients still have to face the radioactive iodine (RAI)-refractory problems. Sorafenib is an oral multikinase inhibitor for patients with advanced RAI refractory DTC. However, the side effects and drug resistance of sorafenib suggest us to develop novel drugs and strategies for the therapy of thyroid carcinoma. In this study, we firstly found that patients with sorafenib resistance showed no significant change in rapidly accelerated fibrosarcoma and VEGFR expression levels compared with sorafenib sensitive patients. Moreover, a further miRNAs screen by qRT-PCR indicated that miR-124-3p and miR-506-3p (miR-124/506) were remarkably reduced in sorafenib insensitive patients. With a bioinformatics prediction and functional assay validation, we revealed that enhancer of zeste homolog 2 (EZH2) was the direct target for miR-124/506. Interestingly, we finally proved that the sorafenib resistant cells regained sensitivity for sorafenib by EZH2 intervention with miR-124/506 overexpression or EZH2 inhibitor treatment in vitro and in vivo, which will lead to the decreased tri-methylation at lysine 27 of histone H3 (H3K27me3) and increased acetylated lysine 27 of histone H3 (H3K27ac) levels. Therefore, we conclude that the suppression of EZH2 represents a potential target for thyroid carcinoma therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Terapia de Alvo Molecular , Sorafenibe/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Análise de Sobrevida , Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/genética
10.
J Am Chem Soc ; 141(44): 17830-17837, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31647658

RESUMO

The construction of two-dimensional (2D) layered compounds for nanofluidic ion transport has recently attracted increasing interest due to the facile fabrication, tunable channel size, and high flux of these materials. Here we design a nacre-mimetic graphite-based nanofluidic structure in which the nanometer-thick graphite flakes are wrapped by negatively charged nanofibrillated cellulose (NFC) fibers to form multiple 2D confined spacings as nanochannels for rapid cation transport. At the same time, the graphite-NFC structure exhibits an ultralow electrical conductivity (σe ≤ 10-9 S/cm), even when the graphite concentration is up to 50 wt %, well above the percolation threshold (∼1 wt %). By tuning the hydration degree of graphite-NFC composites, the surface-charge-governed ion transport in the confined ∼1 nm spacings exhibits nearly 12 times higher ionic conductivity (1 × 10-3 S/cm) than that of a fully swollen structure (∼1.5 nm, 8.5 × 10-5 S/cm) at salt concentrations up to 0.1 M. The resulting charge selective conductor shows intriguing features of both high ionic conductivity and low electrical conductivity. Moreover, the inherent stability of the graphite and NFC components contributes to the strong functionality of the nanofluidic ion conductors in both acidic and basic environments. Our work demonstrates this 1D-2D material hybrid system as a suitable platform to study nanofluidic ion transport and provides a promising strategy to decouple ionic and electronic pathways, which is attractive for applications in new nanofluidic device designs.

11.
Proc Natl Acad Sci U S A ; 113(26): 7094-9, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27307440

RESUMO

Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

12.
Nano Lett ; 18(6): 3926-3933, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29787678

RESUMO

Solid-state electrolytes (SSEs) have been widely considered as enabling materials for the practical application of lithium metal anodes. However, many problems inhibit the widespread application of solid state batteries, including the growth of lithium dendrites, high interfacial resistance, and the inability to operate at high current density. In this study, we report a three-dimensional (3D) mixed electron/ion conducting framework (3D-MCF) based on a porous-dense-porous trilayer garnet electrolyte structure created via tape casting to facilitate the use of a 3D solid state lithium metal anode. The 3D-MCF was achieved by a conformal coating of carbon nanotubes (CNTs) on the porous garnet structure, creating a composite mixed electron/ion conductor that acts as a 3D host for the lithium metal. The lithium metal was introduced into the 3D-MCF via slow electrochemical deposition, forming a 3D lithium metal anode. The slow lithiation leads to improved contact between the lithium metal anode and garnet electrolyte, resulting in a low resistance of 25 Ω cm2. Additionally, due to the continuous CNT coating and its seamless contact with the garnet we observed highly uniform lithium deposition behavior in the porous garnet structure. With the same local current density, the high surface area of the porous garnet framework leads to a higher overall areal current density for stable lithium deposition. An elevated current density of 1 mA/cm2 based on the geometric area of the cell was demonstrated for continuous lithium cycling in symmetric lithium cells. For battery operation of the trilayer structure, the lithium can be cycled between the 3D-MCF on one side and the cathode infused into the porous structure on the opposite side. The 3D-MCF created by the porous garnet structure and conformal CNT coating provides a promising direction toward new designs in solid-state lithium metal batteries.

13.
Nat Mater ; 16(5): 572-579, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27992420

RESUMO

Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major challenge being the high solid-solid interfacial impedance between the garnet electrolyte and electrode materials. In this work, we effectively address the large interfacial impedance between a lithium metal anode and the garnet electrolyte using ultrathin aluminium oxide (Al2O3) by atomic layer deposition. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) is the garnet composition of choice in this work due to its reduced sintering temperature and increased lithium ion conductivity. A significant decrease of interfacial impedance, from 1,710 Ω cm2 to 1 Ω cm2, was observed at room temperature, effectively negating the lithium metal/garnet interfacial impedance. Experimental and computational results reveal that the oxide coating enables wetting of metallic lithium in contact with the garnet electrolyte surface and the lithiated-alumina interface allows effective lithium ion transport between the lithium metal anode and garnet electrolyte. We also demonstrate a working cell with a lithium metal anode, garnet electrolyte and a high-voltage cathode by applying the newly developed interface chemistry.

14.
Nano Lett ; 17(6): 3792-3797, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28463514

RESUMO

Room-temperature Na ion batteries (NIBs) have attracted great attention because of the widely available, abundant sodium resources and potentially low cost. Currently, the challenge of the NIB development is due primarily to the lack of a high-performance anode, while the Na metal anode holds great promise considering its highest specific capacity of 1165 mA h/g and lowest anodic potential. However, an uneven deposit, relatively infinite volume change, and dendritic growth upon plating/stripping cycles cause a low Coulombic efficiency, poor cycling performance, and severe safety concerns. Here, a stable Na carbonized wood (Na-wood) composite anode was fabricated via a rapid melt infusion (about 5 s) into channels of carbonized wood by capillary action. The channels function as a high-surface-area, conductive, mechanically stable skeleton, which lowers the effective current density, ensures a uniform Na nucleation, and restricts the volume change over cycles. As a result, the Na-wood composite anode exhibited flat plating/stripping profiles with smaller overpotentials and stable cycling performance over 500 h at 1.0 mA/cm2 in a common carbonate electrolyte system. In sharp comparison, the planar Na metal electrode showed a much shorter cycle life of 100 h under the same test conditions.

15.
Nano Lett ; 17(1): 565-571, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936780

RESUMO

Solid-state electrolytes are known for nonflammability, dendrite blocking, and stability over large potential windows. Garnet-based solid-state electrolytes have attracted much attention for their high ionic conductivities and stability with lithium metal anodes. However, high-interface resistance with lithium anodes hinders their application to lithium metal batteries. Here, we demonstrate an ultrathin, conformal ZnO surface coating by atomic layer deposition for improved wettability of garnet solid-state electrolytes to molten lithium that significantly decreases the interface resistance to as low as ∼20 Ω·cm2. The ZnO coating demonstrates a high reactivity with lithium metal, which is systematically characterized. As a proof-of-concept, we successfully infiltrated lithium metal into porous garnet electrolyte, which can potentially serve as a self-supported lithium metal composite anode having both high ionic and electrical conductivity for solid-state lithium metal batteries. The facile surface treatment method offers a simple strategy to solve the interface problem in solid-state lithium metal batteries with garnet solid electrolytes.

16.
Nano Lett ; 17(9): 5817-5822, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28771364

RESUMO

The synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor. During the process of rapid heating and cooling, swift melting, anchoring, and recrystallization occur, resulting in the generation of high-purity nanoparticles. In our work, the cobalt boride (Co2B) nanoparticles with a diameter of 10-20 nm uniformly anchored on the reduced graphene oxide (rGO) nanosheets were successfully prepared using the high temperature pulse method. The as-prepared Co2B/rGO composite displayed remarkable electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We also prepared molybdenum disulfide (MoS2) and cobalt oxide (Co3O4) nanoparticles, thereby demonstrating that the high-temperature pulse is a universal method to synthesize ultrafine metal compound nanoparticles.

17.
J Am Chem Soc ; 139(40): 14257-14264, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28918627

RESUMO

The garnet-based solid state electrolyte (SSE) is considered a promising candidate to realize all solid state lithium (Li) metal batteries. However, critical issues require additional investigation before practical applications become possible, among which high interfacial impedance and low interfacial stability remain the most challenging. In this work, neutron depth profiling (NDP), a nondestructive and uniquely Li-sensitive technique, has been used to reveal the interfacial behavior of garnet SSE in contact with metallic Li through in situ monitoring of Li plating-stripping processes. The NDP measurement demonstrates predictive capabilities for diagnosing short-circuits in solid state batteries. Two types of cells, symmetric Li/garnet/Li (LGL) cells and asymmetric Li/garnet/carbon-nanotubes (LGC), are fabricated to emulate the behavior of Li metal and Li-free Li metal anodes, respectively. The data imply the limitation of Li-free Li metal anode in forming reliable interfacial contacts, and strategies of excessive Li and better interfacial engineering need to be investigated.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanotubos de Carbono/química , Eletrodos , Eletrólitos/química , Desenho de Equipamento , Metais/química , Nêutrons
18.
Chem Soc Rev ; 45(24): 6742-6765, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27704060

RESUMO

2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results in terms of tunable properties and device performance. Among all modification methods, intercalation of 2D materials has emerged as a particularly powerful tool: it provides the highest possible doping level and is capable of (ir)reversibly changing the phase of the material. Intercalated 2D materials exhibit extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. The recent progress on host 2D materials, various intercalation species, and intercalation methods, as well as tunable properties and potential applications enabled by intercalation, are comprehensively reviewed.

19.
Nano Lett ; 16(6): 3616-23, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27148884

RESUMO

Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 µm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

20.
Nano Lett ; 16(11): 7282-7289, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27739680

RESUMO

Carbon nanomaterials exhibit outstanding electrical and mechanical properties, but these superior properties are often compromised as nanomaterials are assembled into bulk structures. This issue of scaling limits the use of carbon nanostructures and can be attributed to poor physical contacts between nanostructures. To address this challenge, we propose a novel technique to build a 3D interconnected carbon matrix by forming covalent bonds between carbon nanostructures. High temperature Joule heating was applied to bring the carbon nanofiber (CNF) film to temperatures greater than 2500 K at a heating rate of 200 K/min to fuse together adjacent carbon nanofibers with graphitic carbon bonds, forming a 3D continuous carbon network. The bulk electrical conductivity of the carbon matrix increased four orders of magnitude to 380 S/cm with a sheet resistance of 1.75 Ω/sq. The high temperature Joule heating not only enables fast graphitization of carbon materials at high temperature, but also provides a new strategy to build covalently bonded graphitic carbon networks from amorphous carbon source. Because of the high electrical conductivity, good mechanical structures, and anticorrosion properties, the 3D interconnected carbon membrane shows promising applications in energy storage and electrocatalysis fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA