Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38874527

RESUMO

Conventionally, for cartilage tissue engineering applications, transforming growth factor beta (TGF-ß) is administered at doses that are several orders of magnitude higher than those present during native cartilage development. While these doses accelerate extracellular matrix (ECM) biosynthesis, they may also contribute to features detrimental to hyaline cartilage function, including tissue swelling, type I collagen (COL-I) deposition, cellular hypertrophy, and cellular hyperplasia. In contrast, during native cartilage development, chondrocytes are exposed to moderate TGF-ß levels, which serve to promote strong biosynthetic enhancements while mitigating risks of pathology associated with TGF-ß excesses. Here, we examine the hypothesis that physiologic doses of TGF-ß can yield neocartilage with a more hyaline cartilage-like composition and structure relative to conventionally administered supraphysiologic doses. This hypothesis was examined on a model system of reduced-size constructs (∅2 × 2 mm or ∅3 × 2 mm) comprised of bovine chondrocytes encapsulated in agarose, which exhibit mitigated TGF-ß spatial gradients allowing for an evaluation of the intrinsic effect of TGF-ß doses on tissue development. Reduced-size (∅2 × 2 mm or ∅3 × 2 mm) and conventional-size constructs (∅4-∅6 mm × 2 mm) were subjected to a range of physiologic (0.1, 0.3, 1 ng/mL) and supraphysiologic (3, 10 ng/mL) TGF-ß doses. At day 56, the physiologic 0.3 ng/mL dose yielded reduced-size constructs with native cartilage-matched Young's modulus (EY) (630 ± 58 kPa) and sulfated glycosaminoglycan (sGAG) content (5.9 ± 0.6%) while significantly increasing the sGAG-to-collagen ratio, leading to significantly reduced tissue swelling relative to constructs exposed to the supraphysiologic 10 ng/mL TGF-ß dose. Furthermore, reduced-size constructs exposed to the 0.3 ng/mL dose exhibited a significant reduction in fibrocartilage-associated COL-I and a 77% reduction in the fraction of chondrocytes present in a clustered morphology, relative to the supraphysiologic 10 ng/mL dose (p < 0.001). EY was significantly lower for conventional-size constructs exposed to physiologic doses due to TGF-ß transport limitations in these larger tissues (p < 0.001). Overall, physiologic TGF-ß appears to achieve an important balance of promoting requisite ECM biosynthesis, while mitigating features detrimental to hyaline cartilage function. While reduced-size constructs are not suitable for the repair of clinical-size cartilage lesions, insights from this work can inform TGF-ß dosing requirements for emerging scaffold release or nutrient channel delivery platforms capable of achieving uniform delivery of physiologic TGF-ß doses to larger constructs required for clinical cartilage repair.

2.
Nat Nanotechnol ; 19(8): 1190-1202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38684809

RESUMO

Cellular programming of naïve T cells can improve the efficacy of adoptive T-cell therapy. However, the current ex vivo engineering of T cells requires the pre-activation of T cells, which causes them to lose their naïve state. In this study, cationic-polymer-functionalized nanowires were used to pre-program the fate of primary naïve CD8+ T cells to achieve a therapeutic response in vivo. This was done by delivering single or multiple microRNAs to primary naïve mouse and human CD8+ T cells without pre-activation. The use of nanowires further allowed for the delivery of large, whole lentiviral particles with potential for long-term integration. The combination of deletion and overexpression of miR-29 and miR-130 impacted the ex vivo T-cell differentiation fate from the naïve state. The programming of CD8+ T cells using nanowire-delivered co-delivery of microRNAs resulted in the modulation of T-cell fitness by altering the T-cell proliferation, phenotypic and transcriptional regulation, and secretion of effector molecules. Moreover, the in vivo adoptive transfer of murine CD8+ T cells programmed through the nanowire-mediated dual delivery of microRNAs provided enhanced immune protection against different types of intracellular pathogen (influenza and Listeria monocytogenes). In vivo analyses demonstrated that the simultaneous alteration of miR-29 and miR-130 levels in naïve CD8+ T cells reduces the persistence of canonical memory T cells whereas increases the population of short-lived effector T cells. Nanowires could potentially be used to modulate CD8+ T-cell differentiation and achieve a therapeutic response in vivo without the need for pre-activation.


Assuntos
Linfócitos T CD8-Positivos , MicroRNAs , Nanofios , MicroRNAs/genética , Animais , Camundongos , Sobrevivência Celular , Humanos , Expressão Gênica , Células Cultivadas , Transcriptoma , Masculino , Feminino , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia
3.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808691

RESUMO

For cartilage regeneration applications, transforming growth factor beta (TGF-ß) is conventionally administered at highly supraphysiologic doses (10-10,000 ng/mL) in an attempt to cue cells to fabricate neocartilage that matches the composition, structure, and functional properties of native hyaline cartilage. While supraphysiologic doses enhance ECM biosynthesis, they are also associated with inducing detrimental tissue features, such as fibrocartilage matrix deposition, pathologic-like chondrocyte clustering, and tissue swelling. Here we investigate the hypothesis that moderated TGF-ß doses (0.1-1 ng/mL), akin to those present during physiological cartilage development, can improve neocartilage composition. Variable doses of media-supplemented TGF-ß were administered to a model system of reduced-size cylindrical constructs (Ø2-Ø3 mm), which mitigate the TGF-ß spatial gradients observed in conventional-size constructs (Ø4-Ø6 mm), allowing for a novel assessment of the intrinsic effect of TGF-ß doses on macroscale neocartilage properties and composition. The administration of physiologic TGF-ß to reduced-size constructs yields neocartilage with native-matched sGAG content and mechanical properties while providing a more hyaline cartilage-like composition, marked by: 1) reduced fibrocartilage-associated type I collagen, 2) 77% reduction in the fraction of cells present in a clustered morphology, and 3) 45% reduction in the degree of tissue swelling. Physiologic TGF-ß appears to achieve an important balance of promoting requisite ECM biosynthesis, while mitigating hyaline cartilage compositional deficits. These results can guide the development of novel physiologic TGF-ß-delivering scaffolds to improve the regeneration clinical-sized neocartilage tissues.

4.
J Biomech ; 156: 111673, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37364394

RESUMO

TGF-ß is a prominent anabolic signaling molecule associated with synovial joint health. Recent work has uncovered mechanochemical mechanisms that activate the latent form of TGF-ß (LTGF-ß) in the synovial joint-synovial fluid (SF) shearing or cartilage compression-pointing to mechanobiological phenomena, whereby enhanced TGF-ß activity occurs during joint stimulation. Here, we implement computational and experimental models to better understand the role of mechanochemical-activated TGF-ß (aTGF-ß) in regulating the functional biosynthetic activities of synovial joint tissues. Reaction-diffusion models describe the pronounced role of extracellular chemical reactions-load-induced activation, reversible ECM-binding, and cell-mediated internalization-in modulating the spatiotemporal distribution of aTGF-ß in joint tissues. Of note, aTGF-ß from SF shearing predominantly acts on cells in peripheral tissue regions (superficial zone [SZ] chondrocytes and synoviocytes) and aTGF-ß from cartilage compression acts on chondrocytes through all cartilage layers. Further, ECM reversible binding sites in cartilage act to modulate the temporal delivery of aTGF-ß to cells, creating a dynamic where short durations of joint activity give rise to extended periods of aTGF-ß exposure at moderated doses. Ex vivo tissue models were subsequently utilized to characterize the influence of physiologic aTGF-ß activity regimens in regulating functional biosynthetic activities. Physiologic exposure regimens of aTGF-ß in SF induce strong 4-fold to 9-fold enhancements in the secretion rate of the synovial biolubricant, PRG4, from SZ cartilage and synovium explants. Further, aTGF-ß inhibition in cartilage over 1-month culture leads to a pronounced loss of GAG content (30-35% decrease) and tissue softening (60-65% EY reduction). Overall, this work advances a novel perspective on the regulation of TGF-ß in the synovial joint and its role in maintaining synovial joint health.


Assuntos
Cartilagem Articular , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/farmacologia , Articulações , Cartilagem/metabolismo , Membrana Sinovial/metabolismo , Condrócitos , Líquido Sinovial/metabolismo , Cartilagem Articular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA