Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genome Res ; 31(12): 2290-2302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34772700

RESUMO

Arbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation. Here, we assessed the potential of transposable elements for generating such genomic diversity. The dynamic expression of TEs during Rhizophagus irregularis spore development suggests ongoing TE activity. We find Mutator-like elements located near genes belonging to highly expanded gene families. Whole-genome epigenomic profiling of R. irregularis provides direct evidence of DNA methylation and small RNA production occurring at TE loci. Our results support a model in which TE activity shapes the genome, while DNA methylation and small RNA-mediated silencing keep their overproliferation in check. We propose that a well-controlled TE activity directly contributes to genome evolution in AM fungi.

3.
Dev Biol ; 416(1): 18-25, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287880

RESUMO

Germ cells provide maternal mRNAs that are stored in the oocyte, and later translated at a specific time of development. In this context, gene regulation depends mainly on post-transcriptional mechanisms that contribute to keep maternal transcripts in a stable and translationally silent state. In recent years, small non-coding RNAs, such as microRNAs have emerged as key post-transcriptional regulators of gene expression. microRNAs control the translation efficiency and/or stability of targeted mRNAs. microRNAs are present in animal germ cells and maternally inherited microRNAs are abundant in early embryos. However, it is not known how microRNAs control the stability and translation of maternal transcripts. In this review, we will discuss the implication of germline microRNAs in regulating animal oogenesis and early embryogenesis as well as compare their roles with endo-siRNAs, small RNA species that share key molecular components with the microRNA pathway.


Assuntos
Desenvolvimento Embrionário/fisiologia , MicroRNAs/fisiologia , Oogênese/fisiologia , RNA Interferente Pequeno/fisiologia , Animais , Células Germinativas , Humanos , Oócitos/fisiologia
4.
PLoS Genet ; 9(11): e1003961, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244204

RESUMO

Many core components of the microRNA pathway have been elucidated and knowledge of their mechanisms of action actively progresses. In contrast, factors with modulatory roles on the pathway are just starting to become known and understood. Using a genetic screen in Caenorhabditis elegans, we identify a component of the GARP (Golgi Associated Retrograde Protein) complex, vps-52, as a novel genetic interactor of the microRNA pathway. The loss of vps-52 in distinct sensitized genetic backgrounds induces the enhancement of defective microRNA-mediated gene silencing. It synergizes with the core microRNA components, alg-1 Argonaute and ain-1 (GW182), in enhancing seam cell defects and exacerbates the gene silencing defects of the let-7 family and lsy-6 microRNAs in the regulation of seam cell, vulva and ASEL neuron development. Underpinning the observed genetic interactions, we found that VPS-52 impinges on the abundance of the GW182 proteins as well as the levels of microRNAs including the let-7 family. Altogether, we demonstrate that GARP complex fulfills a positive modulatory role on microRNA function and postulate that acting through GARP, vps-52 participates in a membrane-related process of the microRNA pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , MicroRNAs/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , MicroRNAs/genética , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
BMC Genomics ; 15: 940, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25346348

RESUMO

BACKGROUND: Werner Syndrome (WS) is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for WS encodes a DNA helicase/exonuclease protein believed to affect different aspects of transcription, replication, and DNA repair. Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase ortholog also exhibits a shorter life span, which can be rescued by vitamin C. In this study, we analyzed the impact of a mutation in the wrn-1 gene and the dietary supplementation of vitamin C on the global mRNA expression of the whole C. elegans by the RNA-seq technology. RESULTS: Vitamin C increased the mean life span of the wrn-1(gk99) mutant and the N2 wild type strains at 25°C. However, the alteration of gene expression by vitamin C is different between wrn-1(gk99) and wild type strains. We observed alteration in the expression of 1522 genes in wrn-1(gk99) worms compared to wild type animals. Such genes significantly affected the metabolism of lipid, cellular ketone, organic acid, and carboxylic acids. Vitamin C, in return, altered the expression of genes in wrn-1(gk99) worms involved in locomotion and anatomical structure development. Proteolysis was the only biological process significantly affected by vitamin C in wild type worms. CONCLUSIONS: Expression profiling of wrn-1(gk99) worms revealed a very different response to the addition of vitamin C compared to wild type worms. Finally, vitamin C extended the life span of wrn-1(gk99) animals by altering biological processes involved mainly in locomotion and anatomical structure development.


Assuntos
Ácido Ascórbico/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Mutação , Homologia de Sequência do Ácido Nucleico , Transcriptoma/efeitos dos fármacos , Síndrome de Werner/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Longevidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
6.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617250

RESUMO

East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.

7.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999556

RESUMO

The root systems of most plant species are aided by the soil-foraging capacities of symbiotic arbuscular mycorrhizal (AM) fungi of the Glomeromycotina subphylum. Despite recent advances in our knowledge of the ecology and molecular biology of this mutualistic symbiosis, our understanding of the AM fungi genome biology is just emerging. Presented here is a close to T2T genome assembly of the model AM fungus Rhizophagus irregularis DAOM197198, achieved through Nanopore long-read DNA sequencing and Hi-C data. This haploid genome assembly of R. irregularis, alongside short- and long-read RNA-Sequencing data, was used to produce a comprehensive annotation catalog of gene models, repetitive elements, small RNA loci, and DNA cytosine methylome. A phylostratigraphic gene age inference framework revealed that the birth of genes associated with nutrient transporter activity and transmembrane ion transport systems predates the emergence of Glomeromycotina. While nutrient cycling in AM fungi relies on genes that existed in ancestor lineages, a burst of Glomeromycotina-restricted genetic innovation is also detected. Analysis of the chromosomal distribution of genetic and epigenetic features highlights evolutionarily young genomic regions that produce abundant small RNAs, suggesting active RNA-based monitoring of genetic sequences surrounding recently evolved genes. This chromosome-scale view of the genome of an AM fungus genome reveals previously unexplored sources of genomic novelty in an organism evolving under an obligate symbiotic life cycle.


Assuntos
Glomeromycota , Micorrizas , Simbiose/genética , Micorrizas/genética , Genômica , Glomeromycota/genética , RNA
8.
Nat Commun ; 11(1): 1741, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269224

RESUMO

Parental exposure to pathogens can prime offspring immunity in diverse organisms. The mechanisms by which this heritable priming occurs are largely unknown. Here we report that the soil bacteria Pseudomonas vranovensis is a natural pathogen of the nematode Caenorhabditis elegans and that parental exposure of animals to P. vranovensis promotes offspring resistance to infection. Furthermore, we demonstrate a multigenerational enhancement of progeny survival when three consecutive generations of animals are exposed to P. vranovensis. By investigating the mechanisms by which animals heritably adapt to P. vranovensis infection, we found that parental infection by P. vranovensis results in increased expression of the cysteine synthases cysl-1 and cysl-2 and the regulator of hypoxia inducible factor rhy-1 in progeny, and that these three genes are required for adaptation to P. vranovensis. These observations establish a CYSL-1, CYSL-2, and RHY-1 dependent mechanism by which animals heritably adapt to infection.


Assuntos
Adaptação Fisiológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/microbiologia , Cisteína Sintase/metabolismo , Padrões de Herança/genética , Pseudomonas/fisiologia , Adaptação Fisiológica/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cisteína Sintase/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos
9.
Dev Cell ; 47(2): 239-247.e4, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30245155

RESUMO

Animal germ cells possess a specific post-transcriptional regulatory context allowing the storage of maternal transcripts in the oocyte until their translation at a specific point in early development. As key regulators of gene expression, miRNAs repress translation mainly through mRNA destabilization. Thus, germline miRNAs likely use distinct ways to regulate their targets. Here, we use C. elegans to compare miRNA function within germline and somatic tissues. We show that the same miRNA displays tissue-specific gene regulatory mechanisms. While translational repression occurs in both tissues, targeted mRNAs are instead stabilized in the germline. Comparative analyses of miRNA silencing complexes (miRISC) demonstrate that their composition differs from germline to soma. We show that germline miRNA targets preferentially localize to perinuclear regions adjacent to P granules, and their repression is dependent on the core P granule component GLH-1. Together, our findings reveal the existence of different miRISC in animals that affect targeted mRNAs distinctively.


Assuntos
Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , MicroRNAs/metabolismo , Animais , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , MicroRNAs/genética , Oócitos/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
10.
Aging (Albany NY) ; 4(9): 636-47, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23075628

RESUMO

Small non-coding microRNAs are believed to be involved in the mechanism of aging but nothing is known on the impact of microRNAs in the progeroid disorder Werner syndrome (WS). WS is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN ortholog exhibit many phenotypic features of WS, including a pro-oxidant status and a shorter mean life span.Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase also exhibit a shorter life span. Thus, both models are relevant to study the expression of microRNAs involved in WS. In this study, we show that miR-124 expression is lost in the liver of Wrn helicase mutant mice. Interestingly, the expression of this conserved miR-124 in whole wrn-1 mutant worms is also significantly reduced. The loss of mir-124 in C. elegans increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in a reduction in life span. Finally, supplementation of vitamin C normalizes the median life span of wrn-1 and mir-124 mutant worms. These results suggest that biological pathways involving WRN and miR-124 are conserved in the aging process across different species.


Assuntos
Envelhecimento/genética , Proteínas de Caenorhabditis elegans/genética , DNA Helicases/genética , MicroRNAs/genética , RecQ Helicases/genética , Animais , Caenorhabditis elegans , Regulação para Baixo , Camundongos , Camundongos Mutantes , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio , RecQ Helicases/metabolismo , Helicase da Síndrome de Werner
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA