RESUMO
ABSTRACT: Paradisis, GP, Pappas, P, Dallas, G, Zacharogiannis, E, Rossi, J, and Lapole, T. Acute effects of whole-body vibration warm-up on leg and vertical stiffness during running. J Strength Cond Res 35(9): 2433-2438, 2021-Although whole-body vibration (WBV) has been suggested as a suitable and efficient alternative to the classic warm-up routines, it is still unknown how this may impact running mechanics. Therefore, the aim of this study was to investigate the effect of a WBV warm-up procedure on lower-limb stiffness and other spatiotemporal variables during running at submaximal speed. Twenty-two males performed 30-second running bouts at 4.44 m·s-1 on a treadmill before and after a WBV and control warm-up protocols. The WBV protocol (vibration frequency: 50 Hz, peak-to-peak displacement: 4 mm) consisted of 10 sets of 30-second dynamic squatting exercises with 30-second rest periods within sets. Leg and vertical stiffness values were calculated using the spring mass model. The results indicated significant increases only after the WBV protocol for leg stiffness (3.4%), maximal ground reaction force (1.9%), and flight time (4.7%). Consequently, the WBV warm-up protocol produced a change in running mechanics, suggesting a shift toward a more aerial pattern. The functional significance of such WBV-induced changes needs further investigation to clearly determine whether it may influence running economy and peak velocity.
Assuntos
Corrida , Exercício de Aquecimento , Exercício Físico , Humanos , Perna (Membro) , Masculino , VibraçãoRESUMO
In research, the accurate and reliable measurement of leg and vertical stiffness could contribute to valid interpretations. The current study aimed at determining the intraparticipant variability (ie, intraday and interday reliabilities) of leg and vertical stiffness, as well as related parameters, during high speed treadmill running, using the "sine-wave" method. Thirty-one males ran on a treadmill at 6.67 mâs-1, and the contact and flight times were measured. To determine the intraday reliability, three 10-s running bouts with 10-min recovery were performed. In addition, to examine the interday reliability, three 10-s running bouts on 3 separate days with 48-h interbout intervals were performed. The reliability statistics included repeated-measure analysis of variance, average intertrial correlations, intraclass correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation (CV%). Both intraday and interday reliabilities were high for leg and vertical stiffness (ICC > 0.939 and CV < 4.3%), as well as related variables (ICC > 0.934 and CV < 3.9%). It was thus inferred that the measurements of leg and vertical stiffness, as well as the related parameters obtained using the "sine-wave" method during treadmill running at 6.67 mâs-1, were highly reliable, both within and across days.