Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(11): 1580-1591, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199076

RESUMO

The ubiquitin-proteasome system (UPS) plays an important role in maintaining cellular homeostasis by degrading a multitude of key regulatory proteins. FBXW11, also known as b-TrCP2, belongs to the F-box family, which targets the proteins to be degraded by UPS. Transcription factors or proteins associated with cell cycle can be modulated by FBXW11, which may stimulate or inhibit cellular proliferation. Although FBXW11 has been investigated in embryogenesis and cancer, its expression has not been evaluated in osteogenic cells. With the aim to explore FBXW11gene expression modulation in the osteogenic lineage we performed molecular investigations in mesenchymal stem cells (MSCs) and osteogenic cells in normal and pathological conditions. In vitro experiments as well as ex vivo investigations have been performed. In particular, we explored the FBXW11 expression in normal osteogenic cells as well as in cells of cleidocranial dysplasia (CCD) patients or osteosarcoma cells. Our data showed that FBXW11 expression is modulated during osteogenesis and overexpressed in circulating MSCs and in osteogenically stimulated cells of CCD patients. In addition, FBXW11 is post-transcriptionally regulated in osteosarcoma cells leading to increased levels of beta-catenin. In conclusion, our findings show the modulation of FBXW11 in osteogenic lineage and its dysregulation in impaired osteogenic cells.


Assuntos
Osteogênese , Osteossarcoma , Ubiquitina-Proteína Ligases , Proteínas Contendo Repetições de beta-Transducina , Humanos , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Osteogênese/genética , Osteossarcoma/genética , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685971

RESUMO

The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.


Assuntos
MicroRNAs , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Envelhecimento/genética , Exercício Físico , Longevidade , MicroRNAs/genética , Peixe-Zebra/genética
3.
J Transl Med ; 20(1): 397, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058924

RESUMO

BACKGROUND: NorthCape4000 (NC4000) is the most participated ultra-endurance cycling race. Eight healthy male Caucasian amateur cyclists were evaluated: (a) before starting the preparation period; (b) in the week preceding NC4000 (after the training period); (c) after NC4000 race, with the aim to identify the effects of ultra-cycling on body composition, aerobic capacity and biochemical parameters as well as on the differentiation of progenitor cells. METHODS: Bioelectrical impedance analysis (BIA) and dual energy x-ray absorptiometry (DEXA) assessed body composition; cardiopulmonary exercise test (CPET) evaluated aerobic capacity. Differentiation of circulating progenitor cells was evaluated by analyzing the modulation in the expression of relevant transcription factors. In addition, in vitro experiments were performed to investigate the effects of sera of NC4000 participants on adipogenesis and myogenesis. The effects of NC4000 sera on Sestrins and Sirtuin modulation and the promotion of brown adipogenesis in progenitor cells was investigated as well. Two-tailed Student's paired-test was used to perform statistical analyses. RESULTS: We observed fat mass decrease after training as well as after NC4000 performance; we also recorded that vitamin D and lipid profiles were affected by ultra-cycling. In addition, our findings demonstrated that post-NC4000 participant's pooled sera exerted a positive effect in stimulating myogenesis and in inducing brown adipogenesis in progenitor cells. CONCLUSIONS: The training program and Ultra-cycling lead to beneficial effects on body composition and biochemical lipid parameters, as well as changes in differentiation of progenitor cells, with significant increases in brown adipogenesis and in MYOD levels.


Assuntos
Composição Corporal , Lipídeos , Absorciometria de Fóton , Impedância Elétrica , Humanos , Masculino
4.
Respir Res ; 23(1): 83, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382813

RESUMO

INTRODUCTION: The 6-min walking distance (6MWD) test is a useful tool to obtain a measure of functional exercise capacity. However, reference equations have been mainly based on selected populations or small samples. The purpose of this study was to determine the reference equations to predict the 6MWD in a large Italian population sample of healthy adults of a wide age range. METHODS: In the frame of the multi case-control population-based study Gene Environment Interaction in Respiratory Diseases (GEIRD), we studied 530 healthy subjects: 287 females ranging 21-76 and 243 males ranging 21-78 years of age. We measured 6MWD, demographic and anthropometric data and collected the reported physical activity. A multiple linear regression model for the 6MWD included age, age2, height, weight and physical activity for both sex equations. The two-way interaction age-height and age-weight and the quadratic terms of weight and height were also tested for inclusion separately in each model. RESULTS: The mean ± SD for 6MWD was 581.4 ± 66.5 m (range 383-800 m) for females and 608.7 ± 80.1 m (range 410-875 m) for males. The reference equations were 6MWD = 8.10*age + 1.61*heightcm-0.99*weightkg + 22.58*active-0.10*age2 + 222.55 for females (R squared = 0.238) and 6MWD = 26.80*age + 8.46*heightcm-0.45*weightkg-2.54*active-0.06*age2-0.13*age*heightcm-890.18 for males (R squared = 0.159), where "active" is 1 when the subject is physically active, 0 otherwise. CONCLUSION: This study is the first to describe the 6MWD in a large population sample of young, middle aged and elderly healthy Caucasian subjects, and to determine reference equations. These findings will help to improve the evaluation of Italian and European patients with diseases influencing their functional capacity.


Assuntos
Estatura , Caminhada , Adulto , Idoso , Criança , Pré-Escolar , Teste de Esforço , Feminino , Voluntários Saudáveis , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Valores de Referência
5.
Int J Food Sci Nutr ; 73(2): 154-157, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34311650

RESUMO

The management of fish allergy relies on the elimination of all fish from the diet. Nevertheless, an exclusion diet can be problematic from a paediatric nutritional perspective. The issue of a substitute diet for children suffering from fish allergy seems to be not adequately addressed and the consequences of a fish exclusion diet in paediatric age are not known. Fish has an important nutritional value, it is rich in vitamins of group B, D and A, selenium, calcium and phosphorus, iron, zinc, magnesium, iodine and omega-3. While vitamins and iodine are normally present in the diet, omega-3 is present in few other foods, such as vegetable seed oils and nuts. Hence, the scientific research indicates a generic advice regarding a possible omega-3 supplementation in children with fish allergy. Given the knowledge about omega-3 supplementation having a potential good risk-benefit ratio and the absence of serious adverse events related to the omega-3 supplementation, this type of supplementation may seem advisable in children affected by fish allergy.


Assuntos
Ácidos Graxos Ômega-3 , Hipersensibilidade Alimentar , Animais , Criança , Suplementos Nutricionais , Óleos de Peixe , Humanos , Imunoglobulina E , Verduras
6.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216245

RESUMO

RUNX2 and SOX9 are two pivotal transcriptional regulators of chondrogenesis. It has been demonstrated that RUNX2 and SOX9 physically interact; RUNX2 transactivation may be inhibited by SOX9. In addition, RUNX2 exerts reciprocal inhibition on SOX9 transactivity. Epigenetic control of gene expression plays a major role in the alternative differentiation fates of stem cells; in particular, it has been reported that SOX9 can promote the expression of miRNA (miR)-204. Our aim was therefore to investigate the miR-204-5p role during chondrogenesis and to identify the relationship between this miR and the transcription factors plus downstream genes involved in chondrogenic commitment and differentiation. To evaluate the role of miR-204 in chondrogenesis, we performed in vitro transfection experiments by using Mesenchymal Stem Cells (MSCs). We also evaluated miR-204-5p expression in zebrafish models (adults and larvae). By silencing miR-204 during the early differentiation phase, we observed the upregulation of SOX9 and chondrogenic related genes compared to controls. In addition, we observed the upregulation of COL1A1 (a RUNX2 downstream gene), whereas RUNX2 expression of RUNX2 was slightly affected compared to controls. However, RUNX2 protein levels increased in miR-204-silenced cells. The positive effects of miR204 silencing on osteogenic differentiation were also observed in the intermediate phase of osteogenic differentiation. On the contrary, chondrocytes' maturation was considerably affected by miR-204 downregulation. In conclusion, our results suggest that miR-204 negatively regulates the osteochondrogenic commitment of MSCs, while it positively regulates chondrocytes' maturation.


Assuntos
Condrogênese/genética , MicroRNAs/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação para Baixo/genética , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/genética , Fatores de Transcrição SOX9/genética , Células-Tronco/fisiologia , Ativação Transcricional/genética , Regulação para Cima/genética , Peixe-Zebra
7.
Int J Food Sci Nutr ; 72(3): 300-307, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32840151

RESUMO

Honey is a natural product that has been used as medication since the ancient times for its nutritive and therapeutic value. Despite these properties, honey use has been limited in evidence-based medicine due to the lack of evidence in clinical settings, particularly in paediatric population. An increasing interest has grown towards honey during the last years. The aim of this article is to examine the possible role of honey as a therapeutic tool in paediatrics. We performed a literature search to summarise the highest quality evidences, analysed articles regarding honey's nutritional properties and therapeutic value. The state of the art is represented by evidences related to beneficiary effects of honey on respiratory, gastroenterological and oncohaematologic diseases. Many other uses could promisingly come from in vitro studies or clinical trial based on adult samples. Honey shows an excellent risk-benefit profile and can be safely administrated in children older than 12 months. In conclusion, honey does not only represent a grandma's remedy, but is a real useful tool in different clinical settings, including paediatrics practice. However, there is a need for high-quality, large randomised controlled trials confirming effectiveness and practical application of honey in paediatric population.


Assuntos
Produtos Biológicos/uso terapêutico , Mel , Adulto , Animais , Criança , Tosse/tratamento farmacológico , Diarreia/tratamento farmacológico , Humanos , Pneumopatias/tratamento farmacológico , Néctar de Plantas , Terapêutica
8.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800062

RESUMO

Autophagy is involved in different degenerative diseases and it may control epigenetic modifications, metabolic processes, stem cells differentiation as well as apoptosis. Autophagy plays a key role in maintaining the homeostasis of cartilage, the tissue produced by chondrocytes; its impairment has been associated to cartilage dysfunctions such as osteoarthritis (OA). Due to their location in a reduced oxygen context, both differentiating and mature chondrocytes are at risk of premature apoptosis, which can be prevented by autophagy. AutophagomiRNAs, which regulate the autophagic process, have been found differentially expressed in OA. AutophagomiRNAs, as well as other regulatory molecules, may also be useful as therapeutic targets. In this review, we describe and discuss the role of autophagy in OA, focusing mainly on the control of autophagomiRNAs in OA pathogenesis and their potential therapeutic applications.


Assuntos
Autofagia/fisiologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Autofagia/efeitos dos fármacos , Diferenciação Celular , Senescência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/fisiologia , Modelos Animais de Doenças , Humanos , MicroRNAs , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638677

RESUMO

Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients' cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.


Assuntos
Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Mutação/genética , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular/genética , Criança , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Osteoblastos/fisiologia , Osteogênese/genética
10.
Calcif Tissue Int ; 107(3): 266-280, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32607636

RESUMO

C-peptide therapy protects against diabetic micro- and macrovascular damages and neuropatic complications. However, to date, the role of C-peptide in preventing diabetes-related bone loss has not been investigated. Our aim was to evaluate if C-peptide infusion improves bone quality in diabetic rats. Twenty-three male Wistar rats were randomly divided into three groups: normal control group; sham diabetic control group; diabetic plus C-peptide group. Diabetes was induced by streptozotocin injection and C-peptide was delivered subcutaneously for 6 weeks. We performed micro-CT and histological testing to assess several trabecular microarchitectural parameters. At the end, diabetic plus C-peptide rats had a higher serum C-peptide (p = 0.02) and calcium (p = 0.04) levels and tibia weight (p = 0.02) than the diabetic control group. The diabetic plus C-peptide group showed a higher trabecular thickness and cross-sectional thickness than the diabetic control group (p = 0.01 and p = 0.03). Both the normal control and diabetic plus C-peptide groups had more Runx-2 and PLIN1 positive cells in comparison with the diabetic control group (p = 0.045 and p = 0.034). Diabetic rats receiving C-peptide had higher quality of trabecular bone than diabetic rats not receiving this treatment. If confirmed, C-peptide could have a role in improving bone quality in diabetes.


Assuntos
Densidade Óssea , Peptídeo C/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Masculino , Ratos , Ratos Wistar , Estreptozocina
11.
Molecules ; 25(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168858

RESUMO

RUNX2, a master osteogenic transcript ion factor, is overexpressed in several cancer cells; in melanoma it promotes cells migration and invasion as well as neoangiogenesis. The annual mortality rates related to metastatic melanoma are high and novel agents are needed to improve melanoma patients' survival. It has been shown that lectins specifically target malignant cells since they present the Thomsen-Friedenreich antigen. This disaccharide is hidden in normal cells, while it allows selective lectins binding in transformed cells. Recently, an edible lectin named BEL ß-trefoil has been obtained from the wild mushroom Boletus edulis. Our previous study showed BEL ß-trefoil effects on transcription factor RUNX2 downregulation as well as on the migration ability in melanoma cells treated in vitro. Therefore, to better understand the role of this lectin, we investigated the BEL ß-trefoil effects in a zebrafish in vivo model, transplanted with human melanoma cells expressing RUNX2. Our data showed that BEL ß-trefoil is able to spread in the tissues and to reduce the formation of metastases in melanoma xenotransplanted zebrafish. In conclusion, BEL ß-trefoil can be considered an effective biomolecule to counteract melanoma disease.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas Fúngicas/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Fatores Trefoil/farmacologia , Animais , Antineoplásicos/metabolismo , Basidiomycota/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Embrião não Mamífero , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores Trefoil/genética , Fatores Trefoil/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
12.
Minerva Pediatr ; 72(5): 408-415, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32686923

RESUMO

Scientific research, diagnostic tools and clinical experience have shown that children suffering from IgE-mediated fish allergy do not need to follow a strict exclusion diet. In fact, they could tolerate some species of fish, which could be reintroduced in the diet by verifying their tolerance with an oral food challenge in a clinical setting. Consequently, it is possible to look a new insight on diagnosis and management of IgE-mediated fish allergy in children, considering the use of canned tuna in clinical settings. Authors performed a literature search through the Cochrane Library and Medline/PubMed databases. All quantitative and qualitative pediatric studies involving diagnosis and management of IgE-mediated fish allergy and the use of canned tuna in clinical settings were considered. Articles related to allergological and nutritional features of fish, and especially canned tuna, were selected. This research was conducted on May 2020. Canned tuna shows peculiar allergological and nutritional characteristics. Relating to allergy, canning process, characterized by cooking the fish under pressure for a time equal to about 7 hours, can lead a conformational change in parvalbumin, making it less allergenic. In terms of nutrition, canned tuna contains B, D and A vitamins and, above all, omega-3 fatty acids and shows a favourable and significantly sustainable nutritional profile. Lower allergenicity, adequate nutritional value and its rich availability in markets at reasonable costs, could make the use of canned tuna as a solution with an excellent risk/benefit ratio in the field of IgE-mediated fish allergy.


Assuntos
Hipersensibilidade Alimentar/imunologia , Alimentos em Conserva/efeitos adversos , Imunoglobulina E/imunologia , Atum/imunologia , Animais , Criança , Culinária/métodos , Alimentos , Humanos , Tolerância Imunológica/imunologia , Valor Nutritivo
13.
Epidemiol Prev ; 44(5-6): 405-409, 2020.
Artigo em Italiano | MEDLINE | ID: mdl-33706494

RESUMO

It is well known that the prevalence of respiratory allergies has increased over time. At the same time, climate change has become part of our everyday life. The resulting question is whether this 'allergic epidemic' is linked to this aspect. It is assumed that the causes of the increase of respiratory allergies are mainly related to environmental factors and lifestyle: first, the improvement of social and health conditions and related hygiene hypothesis; secondly, lifestyle change and anthropogenic activities, which have caused an alteration in the balance normally existing between soil, water, and atmosphere, giving rise to the phenomena of climate change. In fact, it has been demonstrated that they can influence beginning, duration, and intensity of the pollen season, as well as the allergenicity of pollen. The consequence is both an increase in frequency and intensity of allergic symptomatology in subjects previously affected by allergy, and a promotion of the sensitization of the airways to allergens present in the atmosphere in predisposed subjects. Several intervention strategies aiming to mitigate climate change and reduce anthropogenic emissions and, consequently, respiratory allergies are possible and can be implemented on an individual and social level. It follows that the allergist cannot solve the problem of the progressive increase of respiratory allergies on his own. Anyway, his role can have both clinical and educational purposes with a special commitment to reduce health impact due to environmental risk factors. KEYWORDS: respiratory allergies; allergenic potential of pollen; climate change; pollution.


Assuntos
Poluição do Ar , Mudança Climática , Hipersensibilidade , Poluição do Ar/estatística & dados numéricos , Alérgenos , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/etiologia , Itália/epidemiologia
14.
Chemistry ; 25(14): 3617-3626, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30600841

RESUMO

The synthesis of a conjugate molecule between an unusual red-fluorescent diketopyrrolopyrrole (DPP) unit and a bis-phosphonate (BP) precursor by a click-chemistry strategy to target bone tissue and monitor the interaction is reported. After thorough investigation, conjugation through a triazole unit between a γ-azido rather than a ß-azido BP and an alkyne-functionalized DPP fluorophore group turned out to be the winning strategy. Visualization of the DPP-BP conjugate on osteoclasts and specific antiresorption activity were successfully demonstrated.


Assuntos
Osso e Ossos/diagnóstico por imagem , Difosfonatos/química , Corantes Fluorescentes/química , Cetonas/química , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Pirróis/química , Alcinos/síntese química , Alcinos/química , Animais , Catálise , Bovinos , Química Click , Difosfonatos/síntese química , Corantes Fluorescentes/síntese química , Cetonas/síntese química , Pirróis/síntese química
15.
BMC Cancer ; 18(1): 293, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544460

RESUMO

BACKGROUND: Mutations activating the α subunit of heterotrimeric Gs protein are associated with a number of highly specific pathological molecular phenotypes. One of the best characterized is the McCune Albright syndrome. The disease presents with an increased incidence of neoplasias in specific tissues. MAIN BODY: A similar repertoire of neoplasms can develop whether mutations occur spontaneously in somatic tissues during fetal development or after birth. Glands are the most "permissive" tissues, recently found to include the entire gastrointestinal tract. High frequency of activating Gαs mutations is associated with precise diagnoses (e.g., IPMN, Pyloric gland adenoma, pituitary toxic adenoma). Typically, most neoplastic lesions, from thyroid to pancreas, remain well differentiated but may be a precursor to aggressive cancer. CONCLUSIONS: Here we propose the possibility that gain-of-function mutations of Gαs interfere with signals in the microenvironment of permissive tissues and lead to a transversal neoplastic phenotype.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação com Ganho de Função , Neoplasias/patologia , Humanos , Neoplasias/genética , Fenótipo
16.
Blood ; 126(20): 2320-8, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26330244

RESUMO

Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder, characterized by severe organ complication. Sickle bone disease (SBD) affects a large part of the SCD patient population, and its pathogenesis has been only partially investigated. Here, we studied bone homeostasis in a humanized mouse model for SCD. Under normoxia, SCD mice display bone loss and bone impairment, with increased osteoclast and reduced osteoblast activity. Hypoxia/reperfusion (H/R) stress, mimicking acute vaso-occlusive crises (VOCs), increased bone turnover, osteoclast activity (RankL), and osteoclast recruitment (Rank) with upregulation of IL-6 as proresorptive cytokine. This was associated with further suppression of osteogenic lineage (Runx2, Sparc). To interfere with the development of SBD, zoledronic acid (Zol), a potent inhibitor of osteoclast activity/osteoclastogenesis and promoter of osteogenic lineage, was used in H/R-exposed mice. Zol markedly inhibited osteoclast activity and recruitment, promoting osteogenic lineage. The recurrent H/R stress further worsened bone structure, increased bone turnover, depressed osteoblastogenesis (Runx2, Sparc), and increased both osteoclast activity (RankL, Cathepsin k) and osteoclast recruitment (Rank) in SCD mice compared with either normoxic or single-H/R-episode SCD mice. Zol used before recurrent VOCs prevented bone impairment and promoted osteogenic lineage. Our findings support the view that SBD is related to osteoblast impairment, and increased osteoclast activity resulted from local hypoxia, oxidative stress, and the release of proresorptive cytokine such as IL-6. Zol might act on both the osteoclast and osteoblast compartments as multimodal therapy to prevent SBD.


Assuntos
Anemia Falciforme/metabolismo , Doenças Ósseas/metabolismo , Osteoclastos/metabolismo , Traumatismo por Reperfusão/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/patologia , Animais , Doenças Ósseas/genética , Doenças Ósseas/patologia , Catepsina K/genética , Catepsina K/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Difosfonatos/farmacologia , Modelos Animais de Doenças , Humanos , Imidazóis/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Osteoclastos/patologia , Osteonectina/genética , Osteonectina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Ácido Zoledrônico
17.
Int J Mol Sci ; 18(6)2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608802

RESUMO

Bisphosphonates are well known inhibitors of osteoclast activity and thus may be employed to influence osteoblast activity. The present study was designed to evaluate the in vivo effects of zoledronic acid (ZA) on the proliferation and osteoblastic commitment of mesenchymal stem cells (MSC) in osteoporotic patients. We studied 22 postmenopausal osteoporotic patients. Densitometric, biochemical, cellular and molecular data were collected before as well as after 6 and 12 months of ZA treatment. Peripheral blood MSC-like cells were quantified by colony-forming unit fibroblastic assay; their osteogenic differentiation potential was evaluated after 3 and 7 days of induction, respectively. Circulating MSCs showed significantly increased expression levels of osteoblastic marker genes such as Runt-related transcription factor 2 (RUNX2), and Osteonectin (SPARC) during the 12 months of monitoring time. Lumbar bone mineral density (BMD) variation and SPARC gene expression correlated positively. Bone turnover marker levels were significantly lowered after ZA treatment; the effect was more pronounced for C terminal telopeptide (CTX) than for Procollagen Type 1 N-Terminal Propeptide (P1NP) and bone alkaline phosphatase (bALP). Our findings suggest a discrete anabolic activity supported by osteogenic commitment of MSCs, consequent to ZA treatment. We confirm its anabolic effects in vivo on osteogenic precursors.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Imidazóis/uso terapêutico , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Idoso , Conservadores da Densidade Óssea/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Difosfonatos/farmacologia , Feminino , Humanos , Imidazóis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Osteonectina/genética , Osteoporose Pós-Menopausa/genética , Regulação para Cima/efeitos dos fármacos , Ácido Zoledrônico
18.
Int J Mol Sci ; 18(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236045

RESUMO

Osteoarthritis (OA), the most prevalent musculoskeletal pathology, is mainly characterized by the progressive degradation of articular cartilage due to an imbalance between anabolic and catabolic processes. Consequently, OA has been associated with defects in the chondrocitic differentiation of progenitor stem cells (PSCs). In addition, SOX9 is the transcription factor responsible for PSCs chondrogenic commitment. To evaluate the effects of the non-amino bisphosphonate clodronate in OA patients we investigated SOX9 gene expression in circulating progenitor cells (CPCs) and in an in vitro OA model. We evaluated pain intensity, mental and physical performance in OA patients, as well as serum biomarkers related to bone metabolism. In addition, in order to improve therapeutic strategies, we assayed nanoparticle-embedded clodronate (NPs-clo) in an in vitro model of chondrogenic differentiation. Our data showed upregulation of SOX9 gene expression upon treatment, suggesting an increase in chondrocytic commitment. Clodronate also reduced osteoarticular pain and improved mental and physical performance in patients. Furthermore, NPs-clo stimulated SOX9 expression more efficaciously than clodronate alone. Clodronate may therefore be considered a good therapeutic tool against OA; its formulation in nanoparticles may represent a promising challenge to counteract cartilage degeneration.


Assuntos
Ácido Clodrônico/uso terapêutico , Osteoartrite/tratamento farmacológico , Idoso , Biomarcadores/sangue , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Ácido Clodrônico/química , Ácido Clodrônico/farmacologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Nanopartículas/química , Osteoartrite/patologia , Dor/patologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Índice de Gravidade de Doença , Células-Tronco/citologia , Células-Tronco/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Int J Mol Sci ; 18(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28035992

RESUMO

This review focuses on the osteogenic differentiation of mesenchymal stem cells (MSC), bone formation and turn-over in good and ill skeletal fates. The interacting molecular pathways which control bone remodeling in physiological conditions during a lifelong process are described. Then, alterations of the molecular pathways regulating osteogenesis are addressed. In the aging process, as well as in glucocorticoid-induced osteoporosis, bone loss is caused not only by an unbalanced bone resorption activity, but also by an impairment of MSCs' commitment towards the osteogenic lineage, in favour of adipogenesis. Mutations affecting the expression of key genes involved in the control of bone development occur in several heritable bone disorders. A few examples are described in order to illustrate the pathological consequences of perturbation in different steps of osteogenic commitment, osteoblast maturation, and matrix mineralization, respectively. The involvement of abnormal MSC differentiation in cancer is then discussed. Finally, a brief overview of clinical applications of MSCs in bone regeneration and repair is presented.


Assuntos
Doenças Ósseas/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese , Animais , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Regeneração Óssea , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA