Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511463

RESUMO

The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Surfactantes Pulmonares , Surfactantes Pulmonares/metabolismo , Tensoativos/farmacologia , Nicotiana/metabolismo , Pulmão/metabolismo
2.
Amino Acids ; 54(4): 675-686, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34129091

RESUMO

S-glutathionylated proteins (GSSP), i.e., protein-mixed disulfides with glutathione (GSH), are considered a suitable biomarker of oxidative stress. In fact, they occur within cells at low level and their concentration increases markedly under pro-oxidant conditions. Plasma is something different, since it is physiologically rich in S-thiolated proteins (RSSP), i.e., protein-mixed disulfides with various types of low molecular mass thiols (LMM-SH). However, albumin, which is largely the most abundant plasma protein, possesses a cysteine residue at position 34 that is mostly reduced (about 60%) under physiological conditions, but easily involved in the formation of additional RSSP in the presence of oxidants. The quantification of GSSP requires special attention to sample handling, since their level can be overestimated as a result of artefactual oxidation of GSH. We have developed the present protocol to avoid this methodological problem. Samples should be treated as soon as possible after their collection with the alkylating agent N-ethylmaleimide that masks -SH groups and prevents their oxidation. The GSH released from mixed disulfides by reduction with dithiothreitol is then labeled with the fluorescent probe monobromobimane and quantified by HPLC. The method can be applied to many different biological samples, comprising blood components, red blood cell plasma membrane, cultured cells, and solid organs from animal models.


Assuntos
Dissulfetos , Glutationa , Animais , Compostos Bicíclicos com Pontes , Cromatografia Líquida de Alta Pressão , Cisteína/química , Dissulfetos/química , Glutationa/metabolismo , Oxirredução , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo
3.
Nutr Res Rev ; 35(1): 70-97, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33926594

RESUMO

Cigarette smoke (CS) is likely the most common preventable cause of human morbidity and mortality worldwide. Consequently, inexpensive interventional strategies for preventing CS-related diseases would positively impact health systems. Inhaled CS is a powerful inflammatory stimulus and produces a shift in the normal balance between antioxidants and oxidants, inducing oxidative stress in both the respiratory system and throughout the body. This enduring and systemic pro-oxidative state within the body is reflected by increased levels of oxidative stress and inflammation biomarkers seen in smokers. Smokers might benefit from consuming antioxidant supplements, or a diet rich in fruit and vegetables, which can reduce the CS-related oxidative stress. This review provides an overview of the plasma profile of antioxidants observable in smokers and examines the heterogeneous literature to elucidate and discuss the effectiveness of interventional strategies based on antioxidant supplements or an antioxidant-rich diet to improve the health of smokers. An antioxidant-rich diet can provide an easy-to-implement and cost-effective preventative strategy to reduce the risk of CS-related diseases, thus being one of the simplest ways for smokers to stay in good health for as long as possible. The health benefits attributable to the intake of antioxidants have been observed predominantly when these have been consumed within their natural food matrices in an optimal antioxidant-rich diet, while these preventive effects are rarely achieved with the intake of individual antioxidants, even at high doses.


Assuntos
Antioxidantes , Fumantes , Antioxidantes/farmacologia , Dieta , Suplementos Nutricionais , Humanos , Estresse Oxidativo
4.
J Appl Toxicol ; 42(12): 1948-1961, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35854198

RESUMO

Indoxyl sulphate (IS) is a uremic toxin accumulating in the plasma of chronic kidney disease (CKD) patients. IS accumulation induces side effects in the kidneys, bones and cardiovascular system. Most studies assessed IS effects on cell lines by testing higher concentrations than those measured in CKD patients. Differently, we exposed a human microvascular endothelial cell line (HMEC-1) to the IS concentrations measured in the plasma of healthy subjects (physiological) or CKD patients (pathological). Pathological concentrations reduced cell proliferation rate but did not increase long-term oxidative stress level. Indeed, total protein thiols decreased only after 24 h of exposure in parallel with an increased Nrf-2 protein expression. IS induced actin cytoskeleton rearrangement with formation of stress fibres. Proteomic analysis supported this hypothesis as many deregulated proteins are related to actin filaments organization or involved in the endothelial to mesenchymal transition. Interestingly, two proteins directly linked to cardiovascular diseases (CVD) in in vitro and in vivo studies underwent deregulation: COP9 signalosome complex subunit 9 and thrombomodulin. Future experiments will be needed to investigate the role of these proteins and the signalling pathways in which they are involved to clarify the possible link between CKD and CVD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Indicã/toxicidade , Indicã/metabolismo , Toxinas Urêmicas , Células Endoteliais/metabolismo , Proteômica , Doenças Cardiovasculares/metabolismo
5.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269995

RESUMO

Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Humanos , Falência Renal Crônica/terapia , Oxirredução , Estresse Oxidativo , Proteínas/metabolismo , Insuficiência Renal Crônica/terapia , Compostos de Sulfidrila/química
6.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614132

RESUMO

Urea is the uremic toxin accumulating with the highest concentration in the plasma of chronic kidney disease (CKD) patients, not being completely cleared by dialysis. Urea accumulation is reported to exert direct and indirect side effects on the gastrointestinal tract, kidneys, adipocytes, and cardiovascular system (CVS), although its pathogenicity is still questioned since studies evaluating its side effects lack homogeneity. Here, we investigated the effects of physiological and pathological urea concentrations on a human endothelial cell line from the microcirculation (Human Microvascular Endothelial Cells-1, HMEC-1). Urea (5 g/L) caused a reduction in the proliferation rate after 72 h of exposure and appeared to be a potential endothelial-to-mesenchymal transition (EndMT) stimulus. Moreover, urea induced actin filament rearrangement, a significant increase in matrix metalloproteinases 2 (MMP-2) expression in the medium, and a significant up- or down-regulation of other EndMT biomarkers (keratin, fibrillin-2, and collagen IV), as highlighted by differential proteomic analysis. Among proteins whose expression was found to be significantly dysregulated following exposure of HMEC-1 to urea, dimethylarginine dimethylaminohydrolase (DDAH) and vasorin turned out to be down-regulated. Both proteins have been directly linked to cardiovascular diseases (CVD) by in vitro and in vivo studies. Future experiments will be needed to deepen their role and investigate the signaling pathways in which they are involved to clarify the possible link between CKD and CVD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Células Endoteliais/metabolismo , Ureia/farmacologia , Proteômica , Diálise Renal , Insuficiência Renal Crônica/metabolismo , Proteínas/metabolismo , Doenças Cardiovasculares/metabolismo
7.
Anal Biochem ; 618: 114125, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524411

RESUMO

Protein Thiolation Index (PTI) has been recently proposed as a new biomarker of oxidative stress. It is calculated by measuring both free thiols and S-thiolated proteins in plasma with the assumption that this redox ratio is altered by a pro-oxidant stimulus. Here the original protocol was modified and adapted to the use of microvolumes of blood collected by finger prick and down to 3 µl blood was shown to be the lowest volume suitable for this kind of analysis. The new procedure was used to evaluate both the circadian rhythm and the annual fluctuations of PTI in healthy humans.


Assuntos
Proteínas Sanguíneas/química , Plasma/química , Compostos de Sulfidrila/química , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Appl Toxicol ; 41(2): 291-302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107989

RESUMO

The use of CuO nanoparticles (NPs) has increased greatly and their potential effects on human health need to be investigated. Differentiated Caco-2 cells were treated from the apical (Ap) and the basolateral (Bl) compartment with different concentrations (0, 10, 50 and 100 µg/mL) of commercial or sonochemically synthesized (sono) CuO NPs. Sono NPs were prepared in ethanol (CuOe) or in water (CuOw), obtaining CuO NPs differing in size and shape. The effects on the Caco-2 cell barrier were assessed via transepithelial electrical resistance (TEER) evaluation just before and after 1, 2 and 24 hours of exposure and through the analysis of cytokine release and biomarkers of oxidative damage to proteins after 24 hours. Sono CuOe and CuOw NPs induced a TEER decrease with a dose-dependent pattern after Bl exposure. Conversely, TEER values were not affected by the Ap exposure to commercial CuO NPs and, concerning the Bl exposure, only the lowest concentration tested (10 µg/mL) caused a TEER decrease after 24 hours of exposure. An increased release of interleukin-8 was induced by sono CuO NPs after the Ap exposure to 100 µg/mL and by sono and commercial CuO after the Bl exposure to all the concentrations. No effects of commercial and sono CuO NPs on interleukin-6 (with the only exception of 100 µg/mL Bl commercial CuO) and tumor necrosis factor-α release were observed. Ap treatment with commercial and CuOw NPs was able to induce significant alterations on specific biomarkers of protein oxidative damage (protein sulfhydryl group oxidation and protein carbonylation).


Assuntos
Células CACO-2/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/crescimento & desenvolvimento , Nanopartículas Metálicas/toxicidade , Humanos
9.
Chem Res Toxicol ; 32(6): 1096-1102, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30945548

RESUMO

Glutathione (GSH) is one of the most well-studied biomarkers of oxidative stress. Under oxidizing conditions, GSH is transformed into its disulfide forms, glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG), which are considered to be reliable biomarkers of oxidative stress. In red blood cells (RBCs), the main targets of S-glutathionylation are hemoglobin and membrane-associated skeletal proteins, but S-glutathionylated hemoglobin (HbSSG) has been more thoroughly studied as a biomarker of oxidative stress than S-glutahionylated RBC membrane skeletal proteins. Here, we have investigated whether and how all these biomarkers are altered in human RBCs treated with a slow and cyclically intermittent flux of the oxidant tert-butyl hydroperoxide. To this aim, a new device for sample treatment and collection was developed. During and at the end of the treatment, GSH, GSSG, and PSSG (discriminating between HbSSG and membrane PSSG) were measured by the use of spectrophotometer (for GSSG) and HPLC (for GSH, HbSSG, and membrane PSSG). The main results of our study are as follows: (i) GSH decreased and GSSG increased, but only in the presence of the oxidant, and recovered their initial values at the end of the infusion; (ii) the increase in total PSSG concentration was lower than that of GSSG, but it kept on throughout the experiments; (iii) membrane skeletal proteins did not recover their initial values, whereas HbSSG levels recovered their initial values similarly to GSH and GSSG; (d) membrane skeletal PSSG were more stable and also more abundant than HbSSG. Western blot analysis indicated spectrin, ankyrin, and bands 3, 4.1, and 4.2 as the proteins most susceptible to S-glutathionylation in RBC membrane. These results suggest that S-glutathionylated membrane skeletal proteins can be considered as a suitable biomarker of oxidative stress. Mostly when the oxidant insult is slight and intermittent, PSSG in RBC membranes are worth measuring in addition to GSSG by virtue of their greater stability.


Assuntos
Eritrócitos/metabolismo , Glutationa/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Dissulfetos/análise , Eritrócitos/química , Glutationa/análise , Humanos , Proteínas de Membrana/análise
10.
Cell Biol Toxicol ; 35(4): 345-360, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30648195

RESUMO

Cigarette smoke is a well-established exogenous risk factor containing toxic reactive molecules able to induce oxidative stress, which in turn contributes to smoking-related diseases, including cardiovascular, pulmonary, and oral cavity diseases. We investigated the effects of cigarette smoke extract on human bronchial epithelial cells. Cells were exposed to various concentrations (2.5-5-10-20%) of cigarette smoke extract for 1, 3, and 24 h. Carbonylation was assessed by 2,4-dinitrophenylhydrazine using both immunocytochemical and Western immunoblotting assays. Cigarette smoke induced increasing protein carbonylation in a concentration-dependent manner. The main carbonylated proteins were identified by means of two-dimensional electrophoresis coupled to MALDI-TOF mass spectrometry analysis and database search (redox proteomics). We demonstrated that exposure of bronchial cells to cigarette smoke extract induces carbonylation of a large number of proteins distributed throughout the cell. Proteins undergoing carbonylation are involved in primary metabolic processes, such as protein and lipid metabolism and metabolite and energy production as well as in fundamental cellular processes, such as cell cycle and chromosome segregation, thus confirming that reactive carbonyl species contained in cigarette smoke markedly alter cell homeostasis and functions.


Assuntos
Brônquios/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Fenil-Hidrazinas/análise , Carbonilação Proteica/efeitos dos fármacos , Proteômica , Fumaça , Fumar , Nicotiana
11.
J Appl Toxicol ; 39(8): 1155-1163, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017309

RESUMO

ZnO nanoparticles (NPs) are widely used nowadays, thus the gastrointestinal exposure to ZnO NPs is likely to be relevant and the effects on the intestinal barrier should be investigated. Polarized Caco-2 cells were exposed from the apical (Ap) and basolateral (Bl) compartments to increasing concentrations (0, 10, 50 and 100 µg/mL) of sonochemical (sono) and commercial ZnO NPs. The transepithelial electrical resistance (TEER), cell viability, proinflammatory cytokine release and presence of protein oxidative damage were evaluated after exposure. TEER was not significantly affected by Ap exposure to either sono or commercial ZnO NPs at any tested concentrations. After Bl exposure to sono ZnO NPs (all the concentrations) and to 100 µg/mL of commercial ZnO NPs TEER was decreased (P < 0.05). Ap and Bl exposure to 100 µg/mL sono ZnO NPs and Ap exposure to 50 µg/mL commercial ZnO NPs induced a significant (P < 0.05) release of interleukin-6. A significant (P < 0.05) release of interleukin-8 was observed after Ap exposure to ZnO NPs at 100 µg/mL and after Bl exposure to sono ZnO NPs at 100 µg/mL. Ap or Bl exposure to sono or commercial ZnO NPs did not affect tumour necrosis factor-alpha secretion or protein sulphydryl oxidation. In conclusion, the ZnO NP exposure from the Ap compartment appeared almost safe, while the exposure through the basal compartment appeared to be more hazardous and the different NP size and crystallinity seem to affect the mode of action, but further studies are necessary to elucidate better these toxicity mechanisms.


Assuntos
Citocinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Óxido de Zinco/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Tamanho da Partícula , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo
12.
Anal Biochem ; 538: 38-41, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939006

RESUMO

We have introduced protein thiolation index (PTI), i.e. the molar ratio of the sum of all low molecular mass thiols bound to plasma proteins to protein free cysteinyl residues, as a sensitive biomarker of oxidative stress. According to the original procedure its determination requires a rapid separation of plasma and a specific treatment of samples to stabilize thiols. Here we demonstrate that samples can be collected without use of any anticoagulant to prevent blood clotting and without any stabilization of thiols too. This simplification of the determination of PTI makes its analysis more feasible also in routine clinical laboratories.


Assuntos
Biomarcadores/sangue , Análise Química do Sangue/métodos , Proteínas Sanguíneas/metabolismo , Estresse Oxidativo , Espectrofotometria , Compostos de Sulfidrila/sangue , Adulto , Idoso , Coagulação Sanguínea , Proteínas Sanguíneas/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumar , Adulto Jovem
13.
Int J Mol Sci ; 18(10)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994738

RESUMO

The potential toxic effects of silver nanoparticles (AgNPs), administered by a single intratracheal instillation (i.t), was assessed in a rat model using commercial physico-chemical characterized nanosilver. Histopathological changes, overall toxic response and oxidative stress (kidney and plasma protein carbonylation), paralleled by ultrastructural observations (TEM), were evaluated to examine renal responses 7 and 28 days after i.t. application of a low AgNP dose (50 µg/rat), compared to an equivalent dose of ionic silver (7 µg AgNO3/rat). The AgNPs caused moderate renal histopathological and ultrastructural alteration, in a region-specific manner, being the cortex the most affected area. Notably, the bulk AgNO3, caused similar adverse effects with a slightly more marked extent, also triggering apoptotic phenomena. Specifically, 7 days after exposure to both AgNPs and AgNO3, dilatation of the intercapillary and peripheral Bowman's space was observed, together with glomerular shrinkage. At day 28, these effects still persisted after both treatments, accompanied by an additional injury involving the vascular component of the mesangium, with interstitial micro-hemorrhages. Neither AgNPs nor AgNO3 induced oxidative stress effects in kidneys and plasma, at either time point. The AgNP-induced moderate renal effects indicate that, despite their benefits, novel AgNPs employed in consumer products need exhaustive investigation to ensure public health safety.


Assuntos
Córtex Renal/efeitos dos fármacos , Rim/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Animais , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Cápsula Glomerular/efeitos dos fármacos , Humanos , Íons/toxicidade , Rim/patologia , Rim/ultraestrutura , Córtex Renal/patologia , Córtex Renal/ultraestrutura , Masculino , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
14.
Biochim Biophys Acta ; 1850(1): 1-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25280629

RESUMO

BACKGROUND: Advanced oxidation protein products (AOPPs) are dityrosine cross-linked and carbonyl-containing protein products formed by the reaction of plasma proteins with chlorinated oxidants, such as hypochlorous acid (HOCl). Most studies consider human serum albumin (HSA) as the main protein responsible for AOPP formation, although the molecular composition of AOPPs has not yet been elucidated. Here, we investigated the relative contribution of HSA and fibrinogen to generation of AOPPs. METHODS: AOPP formation was explored by SDS-PAGE, under both reducing and non-reducing conditions, as well as by analytical gel filtration HPLC coupled to fluorescence detection to determine dityrosine and pentosidine formation. RESULTS: Following exposure to different concentrations of HOCl, HSA resulted to be carbonylated but did not form dityrosine cross-linked high molecular weight aggregates. Differently, incubation of fibrinogen or HSA/fibrinogen mixtures with HOCl at concentrations higher than 150 µM induced the formation of pentosidine and high molecular weight (HMW)-AOPPs (>200 k Da), resulting from intermolecular dityrosine cross-linking. Dityrosine fluorescence increased in parallel with increasing HMW-AOPP formation and increasing fibrinogen concentration in HSA/fibrinogen mixtures exposed to HOCl. This conclusion is corroborated by experiments where dityrosine fluorescence was measured in HOCl-treated human plasma samples containing physiological or supra-physiological fibrinogen concentrations or selectively depleted of fibrinogen, which highlighted that fibrinogen is responsible for the highest fluorescence from dityrosine. CONCLUSIONS: A central role for intermolecular dityrosine cross-linking of fibrinogen in HMW-AOPP formation is shown. GENERAL SIGNIFICANCE: These results highlight that oxidized fibrinogen, instead of HSA, is the key protein for intermolecular dityrosine formation in human plasma.


Assuntos
Produtos da Oxidação Avançada de Proteínas/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Fibrinogênio/metabolismo , Tirosina/análogos & derivados , Produtos da Oxidação Avançada de Proteínas/sangue , Arginina/análogos & derivados , Arginina/metabolismo , Western Blotting , Relação Dose-Resposta a Droga , Humanos , Ácido Hipocloroso/farmacologia , Lisina/análogos & derivados , Lisina/metabolismo , Peso Molecular , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Albumina Sérica/metabolismo , Tirosina/metabolismo
15.
J Exp Biol ; 219(Pt 19): 3155-3162, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473434

RESUMO

Flavonoids are the most abundant plant polyphenols, widely occurring in fruits and berries, and show a strong antioxidant activity in vitro Studies of avian species feeding on berries suggest that dietary flavonoids have health-promoting effects and may enhance the expression of melanin-based plumage traits. These effects are probably mediated by the antioxidant activity of flavonoids. However, the effect of dietary flavonoids on oxidative status has never been investigated in any bird species. We analysed the effects of dietary flavonoids on blood non-enzymatic antioxidants and protein oxidative damage of juvenile European blackbirds (Turdus merula). In addition, we analysed the effects of flavonoid-enriched diet on body condition and on the timing of moult from juvenile to adult plumage. Dietary flavonoids did not significantly affect redox status but significantly advanced the onset of moult, hastening plumage development. Moulting birds showed higher protein oxidative damage compared with those that had not yet started moulting. The probability of initiating moult after 40 days of dietary treatment was higher for birds with low circulating levels of oxidizing agents and high glutathione concentration. The metabolization of flavonoids could have altered their redox potential, resulting in no net effects on redox status. However, flavonoid consumption before and during moult may contribute to enhance plumage development. Moreover, our findings suggest that moulting feathers may result in redox imbalance. Given their effect on moult and growth of melanin-rich feathers, fruit flavonoids may have contributed to shape plant fruiting time in relation to fruit consumption preferences by birds.


Assuntos
Dieta , Flavonoides/farmacologia , Muda/efeitos dos fármacos , Passeriformes/crescimento & desenvolvimento , Animais , Glutationa/metabolismo , Modelos Biológicos , Oxidantes/metabolismo , Oxirredução/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo
16.
Mass Spectrom Rev ; 33(3): 183-218, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24272816

RESUMO

First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Eletroforese em Gel Bidimensional/métodos , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Oxirredução , Proteínas/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos
17.
Blood Cells Mol Dis ; 52(4): 166-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24388826

RESUMO

Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers.


Assuntos
Ligantes , Albumina Sérica/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Curcumina/química , Curcumina/metabolismo , Genisteína/química , Genisteína/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Naproxeno/química , Naproxeno/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica , Proteólise , Ácido Salicílico/química , Ácido Salicílico/metabolismo , Albumina Sérica/química
18.
Trends Biochem Sci ; 34(2): 85-96, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19135374

RESUMO

S-Glutathionylation is the specific post-translational modification of protein cysteine residues by the addition of the tripeptide glutathione, the most abundant and important low-molecular-mass thiol within most cell types. Protein S-glutathionylation is promoted by oxidative or nitrosative stress but also occurs in unstressed cells. It can serve to regulate a variety of cellular processes by modulating protein function and to prevent irreversible oxidation of protein thiols. Recent findings support an essential role for S-glutathionylation in the control of cell-signalling pathways associated with viral infections and with tumour necrosis factor-(-induced apoptosis. Glyceraldehyde-3-phosphate dehydrogenase has recently been implicated in the regulation of endothelin-1 synthesis by a novel, S-glutathionylation-based mechanism involving messenger RNA stability. Moreover, recent studies have identified S-glutathionylation as a redox signalling mechanism in plants.


Assuntos
Glutationa/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Humanos , Modelos Biológicos , Oxirredução , Estresse Oxidativo , Dobramento de Proteína , Estabilidade de RNA , Transdução de Sinais
19.
PLoS One ; 19(5): e0303875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776331

RESUMO

BACKGROUND: It is amply demonstrated that cigarette smoke (CS) has a high impact on lung tumor progression worsening lung cancer patient prognosis and response to therapies. Alteration of immune cell types and functions in smokers' lungs have been strictly related with smoke detrimental effects. However, the role of CS in dictating an inflammatory or immunosuppressive lung microenvironment still needs to be elucidated. Here, we investigated the effect of in vitro exposure to cigarette smoke extract (CSE) focusing on macrophages. METHODS: Immortalized murine macrophages RAW 264.7 cells were cultured in the presence of CS extract and their polarization has been assessed by Real-time PCR and cytofluorimetric analysis, viability has been assessed by SRB assay and 3D-cultures and activation by exposure to Poly(I:C). Moreover, interaction with Lewis lung carcinoma (LLC1) murine cell models in the presence of CS extract were analyzed by confocal microscopy. RESULTS: Obtained results indicate that CS induces macrophages polarization towards the M2 phenotype and M2-phenotype macrophages are resistant to the CS toxic activity. Moreover, CS impairs TLR3-mediated M2-M1 phenotype shift thus contributing to the M2 enrichment in lung smokers. CONCLUSIONS: These findings indicate that, in lung cancer microenvironment of smokers, CS can contribute to the M2-phenotype macrophages prevalence by different mechanisms, ultimately, driving an anti-inflammatory, likely immunosuppressive, microenvironment in lung cancer smokers.


Assuntos
Neoplasias Pulmonares , Macrófagos , Microambiente Tumoral , Animais , Camundongos , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Fumaça/efeitos adversos , Polaridade Celular/efeitos dos fármacos , Humanos , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/imunologia
20.
Antioxidants (Basel) ; 12(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37237960

RESUMO

Glutathione (GSH) has special antioxidant properties due to its high intracellular concentration, ubiquity, and high reactivity towards electrophiles of the sulfhydryl group of its cysteine moiety. In most diseases where oxidative stress is thought to play a pathogenic role, GSH concentration is significantly reduced, making cells more susceptible to oxidative damage. Therefore, there is a growing interest in determining the best method(s) to increase cellular glutathione for both disease prevention and treatment. This review summarizes the major strategies for successfully increasing cellular GSH stores. These include GSH itself, its derivatives, NRf-2 activators, cysteine prodrugs, foods, and special diets. The possible mechanisms by which these molecules can act as GSH boosters, their related pharmacokinetic issues, and their advantages and disadvantages are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA