Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804186

RESUMO

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

2.
Nat Commun ; 10(1): 3713, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420542

RESUMO

Our understanding of how global climatic changes are translated into ice-sheet fluctuations and sea-level change is currently limited by a lack of knowledge of the configuration of ice sheets prior to the Last Glacial Maximum (LGM). Here, we compile a synthesis of empirical data and numerical modelling results related to pre-LGM ice sheets to produce new hypotheses regarding their extent in the Northern Hemisphere (NH) at 17 time-slices that span the Quaternary. Our reconstructions illustrate pronounced ice-sheet asymmetry within the last glacial cycle and significant variations in ice-marginal positions between older glacial cycles. We find support for a significant reduction in the extent of the Laurentide Ice Sheet (LIS) during MIS 3, implying that global sea levels may have been 30-40 m higher than most previous estimates. Our ice-sheet reconstructions illustrate the current state-of-the-art knowledge of pre-LGM ice sheets and provide a conceptual framework to interpret NH landscape evolution.

3.
PLoS One ; 13(6): e0199872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953559

RESUMO

We examined late Holocene (ca. 3300 yr BP to present-day) climate variability in the central Northwest Territories (Canadian Subarctic) using a diatom and sedimentological record from Danny's Lake (63.48ºN, 112.54ºW), located 40 km southwest of the modern-day treeline. High-resolution sampling paired with a robust age model (25 radiocarbon dates) allowed for the examination of both lake hydroecological conditions (30-year intervals; diatoms) and sedimentological changes in the watershed (12-year intervals; grain size records) over the late Holocene. Time series analysis of key lake ecological indicators (diatom species Aulacoseira alpigena, Pseudostaurosira brevistriata and Achnanthidium minutissimum) and sedimentological parameters, reflective of catchment processes (coarse silt fraction), suggests significant intermittent variations in turbidity, pH and light penetration within the lake basin. In the diatom record, we observed discontinuous periodicities in the range of ca. 69, 88-100, 115-132, 141-188, 562, 750 and 900 years (>90% and >95% confidence intervals), whereas the coarse silt fraction was characterized by periodicities in the >901 and <61-year range (>95% confidence interval). Periodicities in the proxy data from the Danny's Lake sediment core align with changes in total solar irradiance over the past ca. 3300 yr BP and we hypothesize a link to the Suess Cycle, Gleissberg Cycle and Pacific Decadal Oscillation via occasional inland propagation of shifting air masses over the Pacific Ocean. This research represents an important baseline study of the underlying causes of climate variability in the Canadian Subarctic and provides details on the long-term climate variability that has persisted in this region through the past three thousand years.


Assuntos
Mudança Climática , Diatomáceas , Fósseis , Lagos , Canadá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA