Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Pharmacol Exp Ther ; 355(2): 288-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26359312

RESUMO

Lampalizumab is an antigen-binding fragment of a humanized monoclonal antibody against complement factor D (CFD), a rate-limiting enzyme in the activation and amplification of the alternative complement pathway (ACP), which is in phase III clinical trials for the treatment of geographic atrophy. Understanding of the pharmacokinetics, pharmacodynamics, and biodistribution of lampalizumab following intravitreal administration in the ocular compartments and systemic circulation is limited but crucial for selecting doses that provide optimal efficacy and safety. Here, we sought to construct a semimechanistic and integrated ocular-systemic pharmacokinetic-pharmacodynamic model of lampalizumab in the cynomolgus monkey to provide a quantitative understanding of the ocular and systemic disposition of lampalizumab and CFD inhibition. The model takes into account target-mediated drug disposition, target turnover, and drug distribution across ocular tissues and systemic circulation. Following intravitreal administration, lampalizumab achieves rapid equilibration across ocular tissues. Lampalizumab ocular elimination is relatively slow, with a τ1/2 of approximately 3 days, whereas systemic elimination is rapid, with a τ1/2 of 0.8 hours. Target-independent linear clearance is predominant in the eye, whereas target-mediated clearance is predominant in the systemic circulation. Systemic CFD synthesis was estimated to be high (7.8 mg/day); however, the amount of CFD entering the eye due to influx from the systemic circulation was small (<10%) compared with the lampalizumab dose and is thus expected to have an insignificant impact on the clinical dose-regimen decision. Our findings support the clinical use of intravitreal lampalizumab to achieve significant ocular ACP inhibition while maintaining low systemic exposure and minimal systemic ACP inhibition.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Fator D do Complemento/antagonistas & inibidores , Atrofia Geográfica/metabolismo , Fragmentos Fab das Imunoglobulinas/farmacologia , Administração Intravenosa , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Humor Aquoso/metabolismo , Feminino , Atrofia Geográfica/tratamento farmacológico , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Injeções Intravítreas , Macaca fascicularis , Masculino , Modelos Biológicos , Retina/metabolismo , Corpo Vítreo/metabolismo
2.
J Pharmacol Exp Ther ; 351(3): 527-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25232192

RESUMO

Anti-factor D (AFD; FCFD4514S, lampalizumab) is a humanized IgG Fab fragment directed against factor D (fD), a rate-limiting serine protease in the alternative complement pathway (AP). Evaluation of AFD as a potential intravitreal (IVT) therapeutic for dry age-related macular degeneration patients with geographic atrophy (GA) is ongoing. However, it is unclear whether IVT administration of AFD can affect systemic AP activation and potentially compromise host-immune responses. We characterized the pharmacologic properties of AFD and assessed the effects of AFD administered IVT (2 or 20 mg) or intravenous (0.2, 2, or 20 mg) on systemic complement activity in cynomolgus monkeys. For the IVT groups, serum AP activity was reduced for the 20 mg dose group between 2 and 6 hours postinjection. For the intravenous groups, AFD inhibited systemic AP activity for periods of time ranging from 5 minutes (0.2 mg group) to 3 hours (20 mg group). Interestingly, the concentrations of total serum fD increased up to 10-fold relative to predose levels following administration of AFD. Furthermore, AFD was found to inhibit systemic AP activity only when the molar concentration of AFD exceeded that of fD. This occurred in cynomolgus monkeys at serum AFD levels ≥2 µg/ml, a concentration 8-fold greater than the maximum serum concentration observed following a single 10 mg IVT dose in a clinical investigation in patients with GA. Based on these findings, the low levels of serum AFD resulting from IVT administration of a clinically relevant dose are not expected to appreciably affect systemic AP activity.


Assuntos
Complemento C3a/antagonistas & inibidores , Fator D do Complemento/antagonistas & inibidores , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Degeneração Macular/tratamento farmacológico , Animais , Bovinos , Complemento C3a/imunologia , Fator D do Complemento/imunologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Injeções Intravítreas , Macaca fascicularis , Degeneração Macular/sangue , Degeneração Macular/imunologia , Masculino , Camundongos , Resultado do Tratamento
3.
Pharm Res ; 29(9): 2512-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22707361

RESUMO

PURPOSE: To compare the pharmacokinetics (PK) of MNRP1685A, a human monoclonal antibody (mAb) against neuropilin-1 (NRP1), in mice, rats, monkeys, and cancer patients from a Phase I study to model with parallel linear and nonlinear clearances. METHODS: Binding characteristics of MNRP1685A in different species were evaluated using surface plasmon resonance technology. PK profiles of MNRP1685A after single and/or multiple doses in different species were analyzed using population analysis. PK parameters were compared across species. RESULTS: MNRP1685A binds to NRP1 in all four species tested. Consistent with the wide expression of NRP1, MNRP1685A demonstrated pronounced non-linear PK over a wide dose range. PK profiles are best described by a two-compartment model with parallel linear and nonlinear clearances. Model-derived PK parameters suggest similar in-vivo target expression levels and binding affinity to target across all species tested. However, compared to typical human/humanized mAbs, non-specific clearance of MNRP1685A was faster in mice, rats, and humans (60.3, 19.4, and 8.5 ml/day/kg), but not in monkeys (3.22 ml/day/kg). CONCLUSIONS: Monkey PK properly predicted the target-mediated clearance of MNRP1685A but underestimated its non-specific clearance in humans. This unique PK property warrants further investigation of underlying mechanisms.


Assuntos
Anticorpos Monoclonais/farmacocinética , Neuropilina-1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Humanos , Modelos Biológicos , Especificidade da Espécie
4.
J Pharmacokinet Pharmacodyn ; 39(2): 217-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22382554

RESUMO

MNRP1685A (anti-NRP1) is a fully human IgG1 monoclonal antibody against neuropilin-1 (NRP1), a protein necessary for blood vessel maturation. MNRP1685A binds to free membrane-bound NRP1 (mNRP1) and circulating NRP1 (cNRP1). Total cNRP1 increased in a dose-dependent manner following anti-NRP1 administration in mice, rats, and monkeys. The purpose of this study is to develop a mechanism-based model to simultaneously describe the kinetics of both unbound drug (MNRP1685A) and total cNRP1 in cynomolgus monkeys. Pharmacokinetic (PK) and pharmacodynamic (PD) profiles after single- or multiple-dose administrations were well described by the two-target quasi-steady-state (QSS) model. The estimated nonspecific clearance was 3.26 mL/day/kg and central compartment volume was 38.2 mL/kg. The maximum elimination rate for mNRP1-mediated disposition was 98.8 nM/day. The synthesis rate (3.8 nM/day), degradation rate constant (1.53 day(-1)), and complex elimination rate constant (0.260 day(-1)) for cNRP1 were also derived from the model. QSS constants were 6.94 nM for mNRP1 and 2.8 nM for cNRP1. The results suggest that cNRP1 has minimal effect on MNRP1685A PK while mNRP1 plays a major role in the target-mediated drug disposition. This finding is favorable as the desired pharmacological target is mNRP1, rather than cNRP1. The two-target QSS model provides mechanistic understanding of the nonlinear PK of MNRP1685A. Based on the model prediction, the free drug concentrations to maintain free mNRP1 and cNRP1 below 10% of baseline level are 10 and 20 µg/mL, respectively. This serves as a target concentration for clinical dose selection, assuming cynomolgus monkeys are predictive for humans.


Assuntos
Anticorpos Monoclonais/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Modelos Biológicos , Neuropilina-1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/farmacologia , Macaca fascicularis , Masculino , Neuropilina-1/metabolismo , Farmacocinética , Ovinos
5.
MAbs ; 6(6): 1631-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484068

RESUMO

Delta-like-4 ligand (DLL4) plays an important role in vascular development and is widely expressed on the vasculature of normal and tumor tissues. Anti-DLL4 is a humanized IgG1 monoclonal antibody against DLL4. The purpose of these studies was to characterize the pharmacokinetics (PK), tissue distribution, and anti-tumor efficacy of anti-DLL4 in mice over a range of doses. PK and tissue distribution of anti-DLL4 were determined in athymic nude mice after administration of single intravenous (IV) doses. In the tissue distribution study, radiolabeled anti-DLL4 (mixture of (125)Iodide and (111)Indium) was administered in the presence of increasing amounts of unlabeled anti-DLL4. Dose ranging anti-DLL4 anti-tumor efficacy was evaluated in athymic nude mice bearing MV522 human lung tumor xenografts. Anti-DLL4 had nonlinear PK in mice with rapid serum clearance at low doses and slower clearance at higher doses suggesting the involvement of target mediated clearance. Consistent with the PK data, anti-DLL4 was shown to specifically distribute to several normal tissues known to express DLL4 including the lung and liver. Maximal efficacy in the xenograft model was seen at doses ≥ 10 mg/kg when tissue sinks were presumably saturated, consistent with the PK and tissue distribution profiles. These findings highlight the importance of mechanistic understanding of antibody disposition to enable dosing strategies for maximizing efficacy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/imunologia , Área Sob a Curva , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Radioisótopos de Índio/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Radioisótopos do Iodo/farmacocinética , Neoplasias Pulmonares/imunologia , Proteínas de Membrana/imunologia , Taxa de Depuração Metabólica , Camundongos Nus , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Chemother Pharmacol ; 72(2): 405-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771513

RESUMO

PURPOSE: PRO95780, a human monoclonal antibody (mAb) against death receptor 5 (DR5/TRAIL-R2/TNFRSF10B), was developed for the treatment for cancer. Our objective was to characterize pharmacokinetics (PK) in mice, rats, and cynomolgus monkeys and concentration-effect relationships of PRO95780 in xenograft mouse models of human cancers; this would guide the selection of dose and regimen for clinical trials. METHODS: The PK profiles were determined in mice, rats, and cynomolgus monkeys. Three xenograft models with a wide range of in vitro sensitivities to PRO95780 were selected for efficacy studies. Tumoristatic serum concentrations (TSCs) were determined using PK/pharmacodynamic (PD) modeling with tumor growth as a PD endpoint. A species-invariant time PK scaling method was employed to estimate disposition in humans using PK data in cynomolgus monkeys. Furthermore, the predicted human PK parameters were used to estimate dose and regimen to achieve TSC observed in mice at the steady-state trough concentrations (C trough ss) in the clinic. RESULTS: Linear PK was observed across species. A serum concentration of 22 µg/mL was identified to be the target TSC in mice. A dose of 10 mg/kg administered once every 2 weeks (Q2W) was predicted to achieve a TSC at C trough ss in 95 % of patients. CONCLUSIONS: PRO95780 has linear PK in mice, rats, and monkeys. Estimated TSCs varied among different xenograft models. A projected target dose in humans is achievable for Q2W administration within the dose range used for other commercial mAbs.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Animais , Anticorpos Monoclonais Humanizados , Área Sob a Curva , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Meia-Vida , Humanos , Injeções Intravenosas , Macaca fascicularis , Camundongos , Camundongos Nus , Modelos Estatísticos , Transplante de Neoplasias , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Invest Ophthalmol Vis Sci ; 54(3): 1616-24, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23361508

RESUMO

PURPOSE: To characterize ranibizumab pharmacokinetics in patients with AMD. METHODS: A population approach of nonlinear mixed-effect pharmacokinetic modeling based on concentration-time data from 2993 serum samples from 674 AMD patients enrolled in 5 phase 1 to 3 clinical trials of single or multiple intravitreal (ITV) doses of ranibizumab (0.3-2.0 mg/eye) administered biweekly or monthly for up to 24 months. RESULTS: A TOTAL OF 696 CONCENTRATION-TIME RECORDS FROM 229 SUBJECTS WITH ONE OR MORE MEASURABLE TOTAL SERUM RANIBIZUMAB CONCENTRATIONS WERE ANALYZED. THE SYSTEMIC CONCENTRATION-TIME DATA FOR RANIBIZUMAB WERE BEST DESCRIBED BY A ONE-COMPARTMENT MODEL WITH FIRST-ORDER ABSORPTION INTO AND FIRST-ORDER ELIMINATION FROM THE SYSTEMIC CIRCULATION. VITREOUS ELIMINATION HALF-LIFE (T1/2) WAS CALCULATED TO BE 9 DAYS AND THE INTRINSIC SYSTEMIC ELIMINATION T1/2 WAS CALCULATED TO BE APPROXIMATELY 2 HOURS. FOLLOWING ITV ADMINISTRATION, RANIBIZUMAB EGRESSES SLOWLY INTO THE SYSTEMIC CIRCULATION, RESULTING IN AN APPARENT SERUM T1/2 OF 9 DAYS. SYSTEMIC-TO-VITREOUS EXPOSURE RATIO WAS ESTIMATED TO BE 1: 90,000. With monthly and quarterly ITV regimens, the serum concentrations of ranibizumab at steady-state for both the 0.3 and 0.5 mg/eye dose levels were estimated to be below the range needed to inhibit VEGF-A-induced endothelial cell proliferation in vitro by 50% at all times. CONCLUSIONS: Systemic exposure to ranibizumab after ITV injection was very low due to elimination on reaching systemic circulation from the vitreous. Population pharmacokinetic analysis of data from a representative sample of AMD patients did not identify clinically significant sources or correlates of variability in ranibizumab exposure. (ClinicalTrials.gov numbers, NCT00056836, NCT00056823.).


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Degeneração Macular/tratamento farmacológico , Idoso , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/uso terapêutico , Ensaios Clínicos como Assunto , Feminino , Meia-Vida , Humanos , Injeções Intravítreas , Masculino , Ranibizumab , Corpo Vítreo/metabolismo
8.
Clin Cancer Res ; 19(18): 5068-78, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23894056

RESUMO

PURPOSE: We characterized the pharmacokinetics of onartuzumab (MetMAb) in animals and determined a concentration-effect relationship in tumor-bearing mice to enable estimation of clinical pharmacokinetics and target doses. EXPERIMENTAL DESIGN: A tumor growth inhibition model was used to estimate tumoristatic concentrations (TSC) in mice. Human pharmacokinetic parameters were projected from pharmacokinetics in cynomolgus monkeys by the species-invariant time method. Monte Carlo simulations predicted the percentage of patients achieving steady-state trough serum concentrations (Ctrough ss) ≥TSC for every 3-week (Q3W) dosing. RESULTS: Onartuzumab clearance (CL) in the linear dose range was 21.1 and 12.2 mL/d/kg in mice and cynomolgus monkeys with elimination half-life at 6.10 and 3.37 days, respectively. The estimated TSC in KP4 pancreatic xenograft tumor-bearing mice was 15 µg/mL. Projected CL for humans in the linear dose range was 5.74 to 9.36 mL/d/kg with scaling exponents of CL at 0.75 to 0.9. Monte Carlo simulations projected a Q3W dose of 10 to 30 mg/kg to achieve Ctrough ss of 15 µg/mL in 95% or more of patients. CONCLUSIONS: Onartuzumab pharmacokinetics differed from typical bivalent glycosylated monoclonal antibodies with approximately 2-times faster CL in the linear dose range. Despite this higher CL, xenograft efficacy data supported dose flexibility with Q1W to Q3W dose regimens in the clinical setting with a TSC of 15 µg/mL as the Ctrough ss target. The projected human efficacious dose of 10 to 30 mg/kg Q3W should achieve the target TSC of 15 µg/mL. These data show effective pharmacokinetic/pharmacodynamic modeling to project doses to be tested in the clinic.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Western Blotting , Carcinoma Ductal Pancreático/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Macaca fascicularis , Camundongos , Camundongos Nus , Método de Monte Carlo , Neoplasias Pancreáticas/metabolismo , Valor Preditivo dos Testes , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Clin Pharmacol ; 53(11): 1103-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23922054

RESUMO

Onartuzumab is a unique, humanized, monovalent (one-armed) monoclonal antibody (mAb) against the MET receptor. The intravenous (IV) pharmacokinetics (PK) of onartuzumab were investigated in a phase I study and a phase II study in recurrent non-small cell lung cancer (NSCLC) patients. The potential for drug-drug interaction (DDI) was assessed during co-administration of IV onartuzumab with oral erlotinib, by measuring the PK of both drugs. The concentration-time profiles of onartuzumab were adequately described using a two-compartment model with linear clearance (CL) at doses between 4 and 30 mg/kg. The estimates for CL, central compartment volume (V1 ), and median terminal half-life were 0.439 L/day, 2.77 L, and 13.4 days, respectively. Statistically significant covariates included creatinine clearance (CrCL) on clearance, weight and gender on V1 , and weight on peripheral compartment volume (V2 ), but the clinical relevance of these covariates needs to be further evaluated. The current analysis did not indicate obvious DDI between onartuzumab and erlotinib. MET diagnostic status did not impact the exposure of either agent. Despite the slightly faster clearance compared with typical bivalent mAbs, the PK of onartuzumab support dosing regimens of 15 mg/kg every 3 weeks or doses equivalent to achieve the target minimum tumoristatic concentration in patients.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antineoplásicos/farmacocinética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Interações Medicamentosas , Cloridrato de Erlotinib , Feminino , Humanos , Masculino , Modelos Biológicos , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinazolinas/administração & dosagem , Quinazolinas/farmacocinética
10.
Clin Cancer Res ; 19(16): 4433-45, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23812669

RESUMO

PURPOSE: Our goal was to develop a potent humanized antibody against mouse/human CXCL12. This report summarized its in vitro and in vivo activities. EXPERIMENTAL DESIGN: Cell surface binding and cell migration assays were used to select neutralizing hamster antibodies, followed by testing in several animal models. Monoclonal antibody (mAb) 30D8 was selected for humanization based on its in vitro and in vivo activities. RESULTS: 30D8, a hamster antibody against mouse and human CXCL12α, CXCL12ß, and CXCL12γ, was shown to dose-dependently block CXCL12α binding to CXCR4 and CXCR7, and CXCL12α-induced Jurkat cell migration in vitro. Inhibition of primary tumor growth and/or metastasis was observed in several models. 30D8 alone significantly ameliorated arthritis in a mouse collagen-induced arthritis model (CIA). Combination with a TNF-α antagonist was additive. In addition, 30D8 inhibited 50% of laser-induced choroidal neovascularization (CNV) in mice. Humanized 30D8 (hu30D8) showed similar in vitro and in vivo activities as the parental hamster antibody. A crystal structure of the hu30D8 Fab/CXCL12α complex in combination with mutational analysis revealed a "hot spot" around residues Asn(44)/Asn(45) of CXCL12α and part of the RFFESH region required for CXCL12α binding to CXCR4 and CXCR7. Finally, hu30D8 exhibited fast clearance in cynomolgus monkeys but not in rats. CONCLUSION: CXCL12 is an attractive target for treatment of cancer and inflammation-related diseases; hu30D8 is suitable for testing this hypothesis in humans.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Quimiocina CXCL12/antagonistas & inibidores , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/química , Quimiocina CXCL12/metabolismo , Cricetinae , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Modelos Moleculares , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Conformação Proteica , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Chemother Pharmacol ; 69(4): 1063-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22203367

RESUMO

PURPOSE: MEHD7945A is a novel dual-action monoclonal antibody in which each of the two antigen-binding fragments is capable of binding to EGFR and HER3 with high affinity. It is being evaluated as a potential therapy for human cancer. The purpose of these studies was to characterize the pharmacokinetics (PK) of MEHD7945A in mouse and monkey and predict its human PK and efficacious dose. METHODS: PK of MEHD7945A was determined in SCID beige mice and cynomolgus monkeys after administration of single intravenous doses. Human PK profiles were projected from monkey PK profiles using a species-invariant time method, and human population PK parameters were estimated using a nonlinear, two-compartment model comprising specific (target-mediated) and nonspecific clearance pathways. The antitumor efficacy in mice bearing human tumor xenografts was used in conjunction with human PK projections to estimate human efficacious doses. RESULTS: The total clearance of MEHD7945A decreased with increase in dose in both mouse and monkey. The nonspecific clearance in monkey was estimated to be 14 mL/day/kg. The predicted nonspecific clearance range in humans was 6-10 mL/day/kg. Doses of 8-12 mg/kg administered every 2 weeks in humans were predicted to achieve exposure of 300 day µg/mL per week to match the efficacious exposure observed in xenograft models. CONCLUSIONS: The PK of MEHD7945A was nonlinear in mouse and monkey in the dose range tested. The nonspecific clearance in monkey was approximately twofold higher than typical humanized IgG1 antibodies. The projected human efficacious dose and dose regimen appear to be achievable in patients.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antineoplásicos/farmacocinética , Receptores ErbB/imunologia , Imunoglobulina G/metabolismo , Receptor ErbB-3/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/imunologia , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Macaca fascicularis , Camundongos , Camundongos SCID , Receptor ErbB-3/metabolismo
12.
Cancer Chemother Pharmacol ; 69(4): 1071-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22203368

RESUMO

PURPOSE: MFGR1877A is a human IgG1 monoclonal antibody that binds to fibroblast growth factor receptor 3 (FGFR3) and is being investigated as a potential therapy for relapsed/refractory FGFR3+ multiple myeloma. The purpose of these studies was to characterize the pharmacokinetics (PK) of MFGR1877A in mouse, rat, and monkey and predict its human PK and efficacious dose. METHODS: PK of MFGR1877A was determined in athymic nude mice, Sprague-Dawley rats and cynomolgus monkeys after administration of single intravenous doses. Human PK profiles were projected from monkey PK profiles using a species-invariant time method, and human population PK parameters were estimated using a non-linear, two-compartment model comprising specific (target-mediated) and non-specific clearance pathways. The anti-tumor efficacy in mice bearing human tumor xenografts was used in conjunction with inhibitory activity in cell proliferation assays and human PK projections to estimate clinical efficacious dose. RESULTS: The PK of MFGR1877A in mice was non-linear in the dose range of 1-50 mg/kg, while in rats and monkeys, PK was non-linear in the dose range of 1-10 mg/kg and linear at doses ≥ 10 mg/kg. The predicted non-specific clearance range in humans was 2.6-4.4 mL/day/kg. Doses ranging from 2 to 3 mg/kg weekly to 6-10 mg/kg every 4 weeks were predicted to achieve the target exposure in ≥ 90% of multiple myeloma patients. CONCLUSIONS: The predicted non-specific clearance of MFGR1877A in humans is similar to typical human IgG1 antibodies and will be verified in a Phase 1 study. The projected human efficacious dose and regimen appear to be achievable in patients.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacocinética , Mieloma Múltiplo/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Macaca fascicularis , Camundongos , Camundongos Nus , Mieloma Múltiplo/tratamento farmacológico , Dinâmica não Linear , Ratos , Ratos Sprague-Dawley , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS One ; 7(9): e45116, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028793

RESUMO

PURPOSE: Oxidized low-density lipoprotein (LDL) plays an essential role in the pathogenesis of atherosclerosis. The purpose of this study was to characterize the pharmacokinetics (PK) of a human recombinant IgG1 antibody to oxidized LDL (anti-oxLDL) in cynomolgus monkey. The tissue biodistribution of anti-oxLDL was also investigated using positron emission tomography (PET) imaging. METHODS: Anti-oxLDL was conjugated with the N-hydroxysuccinimide ester of DOTA (1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid) and radiolabeled by chelation of radioactive copper-64 ((64)Cu) for detection by PET. Anti-oxLDL was administered as a single intravenous (IV) dose of 10 mg/kg (as a mixture of radiolabeled and non-labeled material) to two male and two female cynomolgus monkeys. Serum samples were collected over 29 days. Two ELISA methods were used to measure serum concentrations of anti-oxLDL; Assay A was a ligand binding assay that measured free anti-oxLDL (unbound and partially bound forms) and Assay B measured total anti-oxLDL. The biodistribution was observed over a 48-hour period following dose administration using PET imaging. RESULTS: Anti-oxLDL serum concentration-time profiles showed a biphasic elimination pattern that could be best described by a two-compartment elimination model. The serum concentrations obtained using the two ELISA methods were comparable. Clearance values ranged from 8 to 17 ml/day/kg, while beta half-life ranged from 8 to 12 days. The initial volume of distribution and volume of distribution at steady state were approximately 55 mL/kg and 150 mL/kg, respectively. PET imaging showed distribution predominantly to the blood pool, visible as the heart and great vessels in the trunk and limbs, plus diffuse signals in the liver, kidney, spleen, and bone marrow. CONCLUSIONS: The clearance of anti-oxLDL is slightly higher than typical IgG1 antibodies in cynomolgus monkeys. The biodistribution pattern appears to be consistent with an antibody that has no large, rapid antigen sink outside the blood space.


Assuntos
Anticorpos Monoclonais/farmacocinética , Lipoproteínas LDL/imunologia , Macaca fascicularis/imunologia , Tomografia por Emissão de Pósitrons , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/sangue , Feminino , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Injeções Intravenosas , Macaca fascicularis/sangue , Masculino , Fatores de Tempo , Distribuição Tecidual
14.
Clin Pharmacokinet ; 51(2): 119-35, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22257150

RESUMO

BACKGROUND AND OBJECTIVE: Dosing of therapeutic monoclonal antibodies (mAbs) is often based on body size, with the perception that body size-based dosing would reduce inter-subject variability in drug exposure. However, most mAbs are target specific with a relatively large therapeutic window and generally a small contribution of body size to pharmacokinetic variability. Therefore, the dosing paradigm for mAbs should be assessed in the context of these unique characteristics. The objective of this study was to review the current dosing strategy and to provide a scientific rationale for dosing of mAbs using a modelling and simulation approach. METHODS: In this analysis, the body weight-based or body weight-independent (fixed) dosing regimens for mAbs were systematically evaluated. A generic two-compartment first-order elimination model was developed. Individual or population pharmacokinetic profiles were simulated as a function of the body weight effects on clearance (θ(BW_CL)) and on the central volume of distribution (θ(BW_V1)). The variability in exposure (the area under the serum concentration-time curve [AUC], trough serum concentration [C(min)] and peak serum concentration [C(max)]) was compared between body weight-based dosing and fixed dosing in the entire population. The deviation of exposure for light and heavy subjects from median body weight subjects was also measured. The simulation results were then evaluated with clinical pharmacokinetic characteristics of various mAbs that were given either by body weight-based dosing or by fixed dosing in the case study. RESULTS: Results from this analysis demonstrated that exposure variability was dependent on the magnitude of the body weight effect on pharmacokinetics. In contrast to the conventional assumption, body weight-based dosing does not always offer advantages over fixed dosing in reducing exposure variability. In general, when the exponential functions of θ(BW_CL) and θ(BW_V1) in the population pharmacokinetic model are <0.5, fixed dosing results in less variability and less deviation than body weight-based dosing; when both θ(BW_CL) and θ(BW_V1) are >0.5, body weight-based dosing results in less variability and less deviation than fixed dosing. In the scenarios when either θ(BW_CL) or θ(BW_V1) is >0.5, the impact on exposure variability is different for each exposure measure. The case study demonstrated that most mAbs had little effect or a moderate body weight effect (θ(BW_CL) and θ(BW_V1) <0.5 or ∼0.5). The difference of variability in exposure between body weight-based and fixed dosing is generally less than 20% and the percentages of deviation for light and heavy subpopulations are less than 40%. CONCLUSIONS: The analysis provided insights into the conditions under which either fixed or body weight-based dosing would be superior in reducing pharmacokinetic variability and exposure differences between light and heavy subjects across the population. The pharmacokinetic variability introduced by either dosing regimen is moderate relative to the variability generally observed in pharmacodynamics, efficacy and safety. Therefore, mAb dosing can be flexible. Given many practical advantages, fixed dosing is recommended to be the first option in first-in-human studies with mAbs. The dosing strategy in later stages of clinical development could then be determined based on combined knowledge of the body weight effect on pharmacokinetics, safety and efficacy from the early clinical trials.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Modelos Biológicos , Adulto , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/uso terapêutico , Superfície Corporal , Peso Corporal , Simulação por Computador , Bases de Dados Factuais , Árvores de Decisões , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Taxa de Depuração Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA