Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Magn Reson Med ; 89(4): 1514-1521, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36426762

RESUMO

PURPOSE: To characterize the (2 H) deuterium MR signal measured from human brain at 7T in participants loading with D2 O to ˜1.5% enrichment over a six-week period. METHODS: 2 H spectroscopy and imaging measurements were used to track the time-course of 2 H enrichment within the brain during the initial eight-hour loading period in two participants. Multi-echo gradient echo (MEGE) images were acquired at a range of TR values from four participants during the steady-state loading period and used for mapping 2 H T1 and T2 * relaxation times. Co-registration to higher resolution 1 H images allowed T1 and T2 * relaxation times of deuterium in HDO in cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) to be estimated. RESULTS: 2 H concentrations measured during the eight-hour loading were consistent with values estimated from cumulative D2 O dose and body mass. Signal changes measured from three different regions of the brain during loading showed similar time-courses. After summing over echoes, gradient echo brain images acquired in 7.5 minutes with a voxel volume of 0.36 ml showed an SNR of ˜16 in subjects loaded to 1.5%. T1 -values for deuterium in HDO were significantly shorter than corresponding values for 1 H in H2 O, while T2 * values were similar. 2 H relaxation times in CSF were significantly longer than in GM or WM. CONCLUSION: Deuterium MR Measurements at 7T were used to track the increase in concentration of 2 H in brain during heavy water loading. 2 H T1 and T2 * relaxation times from water in GM, WM, and CSF are reported.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Deutério , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Mapeamento Encefálico/métodos
2.
Biomacromolecules ; 11(11): 2927-35, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-20923202

RESUMO

Solutions of microcrystalline cellulose in 1-ethyl-3-methyl-imidazolium acetate have been investigated using pulsed-field gradient (1)H NMR. In all cases the geometrically larger cation was found to diffuse faster than the smaller anion. Arrhenius temperature analysis has been applied to the ion diffusivities giving activation energies. The diffusion and published viscosity data for these solutions were shown to follow the Stokes-Einstein relationship, giving hydrodynamic radii of 1.6 Š(cation) and 1.8 Š(anion). Theories for obstruction, free-volume and hydrodynamic effects on solvent diffusion have been applied. The Mackie-Meares and Maxwell-Fricke obstruction models provided a correct trend only when assuming a certain fraction of ions are bound to the polymer. From this fraction it was shown that the maximum dissolvable cellulose concentration is ∼27% w/w, which is consistent with the highest known prepared concentration of cellulose in this ionic liquid. The Phillies' hydrodynamic model is found to give the best description for the cellulose concentration dependence of the ion diffusivities.


Assuntos
Celulose/química , Imidazóis/química , Difusão , Íons/química , Soluções
3.
J Cent Nerv Syst Dis ; 12: 1179573520943314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963473

RESUMO

BACKGROUND: T2 relaxation-based magnetic resonance imaging (MRI) signals may provide onset time for acute ischemic strokes with an unknown onset. The ability of visual and quantitative MRI-based methods in a cohort of hyperacute ischemic stroke patients was studied. METHODS: A total of 35 patients underwent 3T (3 Tesla) MRI (<9-hour symptom onset). Diffusion-weighted (DWI), apparent diffusion coefficient (ADC), T1-weighted (T1w), T2-weighted (T2w), and T2 relaxation time (T2) images were acquired. T2-weighted fluid attenuation inversion recovery (FLAIR) images were acquired for 17 of these patients. Image intensity ratios of the average intensities in ischemic and non-ischemic reference regions were calculated for ADC, DWI, T2w, T2 relaxation, and FLAIR images, and optimal image intensity ratio cut-offs were determined. DWI and FLAIR images were assessed visually for DWI/FLAIR mismatch. RESULTS: The T2 relaxation time image intensity ratio was the only parameter with significant correlation with stroke duration (r = 0.49, P = .003), an area under the receiver operating characteristic curve (AUC = 0.77, P < .0001), and an optimal cut-off (T2 ratio = 1.072) that accurately identified patients within the 4.5-hour thrombolysis treatment window with sensitivity of 0.74 and specificity of 0.74. In the patients with the additional FLAIR, areas under the precision-recall-gain curve (AUPRG) and F1 scores showed that the T2 relaxation time ratio (AUPRG = 0.60, F1 = 0.73) performed considerably better than the FLAIR ratio (AUPRG = 0.39, F1 = 0.57) and the visual DWI/FLAIR mismatch (F1 = 0.25). CONCLUSIONS: Quantitative T2 relaxation time is the preferred MRI parameter in the assessment of patients with unknown onset for treatment stratification.

4.
Biomed Spectrosc Imaging ; 8(1-2): 11-28, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328097

RESUMO

BACKGROUND AND OBJECTIVE: In hyperacute ischaemic stroke, T2 of cerebral water increases with time. Quantifying this change may be informative of the extent of tissue damage and onset time. Our objective was to develop a user-unbiased method to measure the effect of cerebral ischaemia on T2 to study stroke onset time-dependency in human acute stroke lesions. METHODS: Six rats were subjected to permanent middle cerebral occlusion to induce focal ischaemia, and a consecutive cohort of acute stroke patients (n = 38) were recruited within 9 hours from symptom onset. T1-weighted structural, T2 relaxometry, and diffusion MRI for apparent diffusion coefficient (ADC) were acquired. Ischaemic lesions were defined as regions of lowered ADC. The median T2 difference (ΔT2) between lesion and contralateral non-ischaemic control region was determined by the newly-developed spherical reference method, and data compared to that obtained by the mirror reference method. Linear regressions and receiver operating characteristics (ROC) were compared between the two methods. RESULTS: ΔT2 increases linearly in rat brain ischaemia by 1.9 ± 0.8 ms/h during the first 6 hours, as determined by the spherical reference method. In patients, ΔT2 linearly increases by 1.6 ± 1.4 and 1.9 ± 0.9 ms/h in the lesion, as determined by the mirror reference and spherical reference method, respectively. ROC analyses produced areas under the curve of 0.83 and 0.71 for the spherical and mirror reference methods, respectively. CONCLUSIONS: Data from the spherical reference method showed that the median T2 increase in the ischaemic lesion is correlated with stroke onset time in a rat as well as in a human patient cohort, opening the possibility of using the approach as a timing tool in clinics.

5.
Phys Med Biol ; 64(9): 095016, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30921782

RESUMO

The apparent diffusion coefficient (ADC) of cerebral water, as measured by diffusion MRI, rapidly decreases in ischaemia, highlighting a lesion in acute stroke patients. The MRI T 2 relaxation time changes in ischaemic brain such that T 2 in ADC lesions may be informative of the extent of tissue damage, potentially aiding in stratification for treatment. We have developed a novel user-unbiased method of determining the changes in T 2 in ADC lesions as a function of clinical symptom duration based on voxel-wise referencing to a contralateral brain volume. The spherical reference method calculates the most probable pre-ischaemic T 2 on a voxel-wise basis, making use of features of the contralateral hemisphere presumed to be largely unaffected. We studied whether T 2 changes in the two main cerebral tissue types, i.e. in grey matter (GM) and white matter (WM), would differ in stroke. Thirty-eight acute stroke patients were accrued within 9 h of symptom onset and scanned at 3 T for 3D T 1-weighted, multi b-value diffusion and multi-echo spin echo MRI for tissue type segmentation, quantitative ADC and absolute T 2 images, respectively. T 2 changes measured by the spherical reference method were 1.94 ± 0.61, 1.50 ± 0.52 and 1.40 ± 0.54 ms h-1 in the whole, GM, and WM lesions, respectively. Thus, T 2 time courses were comparable between GM and WM independent of brain tissue type involved. We demonstrate that T 2 changes in ADC-delineated lesions can be quantified in the clinical setting in a user unbiased manner and that T 2 change correlated with symptom onset time, opening the possibility of using the approach as a tool to assess severity of tissue damage in the clinical setting.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Biomed Spectrosc Imaging ; 7(3-4): 125-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30931248

RESUMO

BACKGROUND AND OBJECTIVE: Multiple factors including chemical composition and microstructure influence relaxivity of tissue water in vivo. We have quantified T1 in the human white mater (WM) together with diffusion tensor imaging to study a possible relationship between water T1, diffusional fractional anisotropy (FA) and fibre-to-field angle. METHODS: An inversion recovery (IR) pulse sequence with 6 inversion times for T1 and a multi-band diffusion tensor sequence with 60 diffusion sensitizing gradient directions for FA and the fibre-to-field angle θ (between the principal direction of diffusion and B0) were used at 3 Tesla in 40 healthy subjects. T1 was assessed using the method previously applied to anisotropy of coherence lifetime to provide a heuristic demonstration as a surface plot of T1 as a function of FA and the angle θ. RESULTS: Our data show that in the WM voxels with FA > 0.3 T1 becomes longer (i.e. 1/T1 = R1 slower) when fibre-to-field angle is 50-60°, approximating the magic angle of 54.7°. The longer T1 around the magic angle was found in a number of WM tracts independent of anatomy. S0 signal intensity, computed from IR fits, mirrored that of T1 being greater in the WM voxels when the fibre-to-field angle was 50-60°. CONCLUSIONS: The current data point to fibre-to-field-angle dependent T1 relaxation in WM as an indication of effects of microstructure on the longitudinal relaxation of water.

7.
J Mech Behav Biomed Mater ; 65: 439-453, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27662625

RESUMO

The highly inhomogeneous distribution of collagen fibrils may have important effects on the biphasic mechanics of articular cartilage. However, the effect of the inhomogeneity of collagen fibrils has mainly been investigated using simplified three-layered models, which may have underestimated the effect of collagen fibrils by neglecting their realistic orientation. The aim of this study was to investigate the effect of the realistic orientation of collagen fibrils on the biphasic mechanics of articular cartilage. Five biphasic material models, each of which included a different level of complexity of fibril reinforcement, were solved using two different finite element software packages (Abaqus and FEBio). Model 1 considered the realistic orientation of fibrils, which was derived from diffusion tensor magnetic resonance images. The simplified three-layered orientation was used for Model 2. Models 3-5 were three control models. The realistic collagen orientations obtained in this study were consistent with the literature. Results from the two finite element implementations were in agreement for each of the conditions modelled. The comparison between the control models confirmed some functions of collagen fibrils. The comparison between Models 1 and 2 showed that the widely-used three-layered inhomogeneous model can produce similar fluid load support to the model including the realistic fibril orientation; however, an accurate prediction of the other mechanical parameters requires the inclusion of the realistic orientation of collagen fibrils.


Assuntos
Cartilagem Articular/patologia , Colágeno/fisiologia , Matriz Extracelular/ultraestrutura , Modelos Biológicos , Colágeno/ultraestrutura , Análise de Elementos Finitos , Humanos
8.
R Soc Open Sci ; 3(3): 150705, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27069663

RESUMO

Aggrecan, a highly charged macromolecule found in articular cartilage, was investigated in aqueous salt solutions with proton nuclear magnetic resonance. The longitudinal and transverse relaxation rates were determined at two different field strengths, 9.4 T and 0.5 T, for a range of temperatures and aggrecan concentrations. The diffusion coefficients of the water molecules were also measured as a function of temperature and aggrecan concentration, using a pulsed field gradient technique at 9.4 T. Assuming an Arrhenius relationship, the activation energies for the various relaxation processes and the translational motion of the water molecules were determined from temperature dependencies as a function of aggrecan concentration in the range 0-5.3% w/w. The longitudinal relaxation rate and inverse diffusion coefficient were approximately equally dependent on concentration and only increased by upto 20% from that of the salt solution. The transverse relaxation rate at high field demonstrated greatest concentration dependence, changing by an order of magnitude across the concentration range examined. We attribute this primarily to chemical exchange. Activation energies appeared to be approximately independent of aggrecan concentration, except for that of the low-field transverse relaxation rate, which decreased with concentration.

9.
PLoS One ; 8(11): e78798, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244366

RESUMO

We develop a curvilinear invariant set of the diffusion tensor which may be applied to Diffusion Tensor Imaging measurements on tissues and porous media. This new set is an alternative to the more common invariants such as fractional anisotropy and the diffusion mode. The alternative invariant set possesses a different structure to the other known invariant sets; the second and third members of the curvilinear set measure the degree of orthotropy and oblateness/prolateness, respectively. The proposed advantage of these invariants is that they may work well in situations of low diffusion anisotropy and isotropy, as is often observed in tissues such as cartilage. We also explore the other orthogonal invariant sets in terms of their geometry in relation to eigenvalue space; a cylindrical set, a spherical set (including fractional anisotropy and the mode), and a log-Euclidean set. These three sets have a common structure. The first invariant measures the magnitude of the diffusion, the second and third invariants capture aspects of the anisotropy; the magnitude of the anisotropy and the shape of the diffusion ellipsoid (the manner in which the anisotropy is realised). We also show a simple method to prove the orthogonality of the invariants within a set.


Assuntos
Modelos Biológicos , Animais , Anisotropia , Humanos
10.
J Phys Chem B ; 116(42): 12810-8, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23020276

RESUMO

Mixtures of 1-ethyl-3-methyl-imidazolium acetate ([C2mim][OAc]) and water across the entire composition range, from pure [C2mim][OAc] to pure water, have been investigated using density, viscosity, and NMR spectroscopy, relaxometry, and diffusion measurements. These results have been compared to ideal mixing laws for the microscopic data obtained from the NMR results and macroscopic data through the viscosity and density. It was also found that the mixing of the two fluids is exothermal. The proton spectra indicate though that [C2mim][OAc] and water are interacting without the formation of new compounds. The maximal deviations of experimental data from theoretical mixing rules were all found to occur within the range 0.74 ± 0.06 mol fraction of water, corresponding to approximately three water molecules per [C2mim][OAc] molecule.


Assuntos
Imidazóis/química , Água/química , Difusão , Espectroscopia de Ressonância Magnética , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA