Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1219318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529323

RESUMO

Excess phosphorus (P) in wastewater effluent poses a serious threat to aquatic ecosystems and can spur harmful algal blooms. Revolving algal biofilm (RAB) systems are an emerging technology to recover P from wastewater before discharge into aquatic ecosystems. In RAB systems, a community of microalgae take up and store wastewater P as polyphosphate as they grow in a partially submerged revolving biofilm, which may then be harvested and dried for use as fertilizer in lieu of mined phosphate rock. In this work, we isolated and characterized a total of 101 microalgae strains from active RAB systems across the US Midwest, including 82 green algae, 9 diatoms, and 10 cyanobacteria. Strains were identified by microscopy and 16S/18S ribosomal DNA sequencing, cryopreserved, and screened for elevated P content (as polyphosphate). Seven isolated strains possessed at least 50% more polyphosphate by cell dry weight than a microalgae consortium from a RAB system, with the top strain accumulating nearly threefold more polyphosphate. These top P-hyperaccumulating strains include the green alga Chlamydomonas pulvinata TCF-48 g and the diatoms Eolimna minima TCF-3d and Craticula molestiformis TCF-8d, possessing 11.4, 12.7, and 14.0% polyphosphate by cell dry weight, respectively. As a preliminary test of strain application for recovering P, Chlamydomonas pulvinata TCF-48 g was reinoculated into a bench-scale RAB system containing Bold basal medium. The strain successfully recolonized the system and recovered twofold more P from the medium than a microalgae consortium from a RAB system treating municipal wastewater. These isolated P-hyperaccumulating microalgae may have broad applications in resource recovery from various waste streams, including improving P removal from wastewater.

2.
Water Res ; 123: 173-182, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28668630

RESUMO

Fat, oil and grease (FOG) blockages in sewer systems are a substantial problem in the United States. It has been estimated that over 50% of sewer overflows are a result of FOG blockages. In this work, a thorough laboratory study was undertaken to examine key variables that contribute to FOG deposit formation under controlled conditions. Physical and chemical properties and their interactions were evaluated and conditions that generated deposits that mimicked field FOG deposits were identified. It was found that 96 of the of 128 reaction conditions tested in the laboratory formed FOG deposits with similar physical and chemical characteristics as field FOG deposits. It was also found that FOG deposits can be created through fatty acid crystallization and not just saponification. Furthermore FOG deposits were found to be more complex than previously documented and contain free fatty acids, fatty acid metal salts, triacylglycerol's, diacylglycerol's and, monoacylglycerol's. Lastly it was found that FOG deposits that only contained saturated fatty acids were on average 2.1 times higher yield strength than deposits that contained unsaturated fatty acids.


Assuntos
Gorduras/química , Esgotos , Ácidos Graxos , Hidrocarbonetos , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA