Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 612(7938): 92-99, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36261525

RESUMO

The Indo-Pacific Warm Pool (IPWP) exerts a dominant role in global climate by releasing huge amounts of water vapour and latent heat to the atmosphere and modulating upper ocean heat content (OHC), which has been implicated in modern climate change1. The long-term variations of IPWP OHC and their effect on monsoonal hydroclimate are, however, not fully explored. Here, by combining geochemical proxies and transient climate simulations, we show that changes of IPWP upper (0-200 m) OHC over the past 360,000 years exhibit dominant precession and weaker obliquity cycles and follow changes in meridional insolation gradients, and that only 30%-40% of the deglacial increases are related to changes in ice volume. On the precessional band, higher upper OHC correlates with oxygen isotope enrichments in IPWP surface water and concomitant depletion in East Asian precipitation as recorded in Chinese speleothems. Using an isotope-enabled air-sea coupled model, we suggest that on precessional timescales, variations in IPWP upper OHC, more than surface temperature, act to amplify the ocean-continent hydrological cycle via the convergence of moisture and latent heat. From an energetic viewpoint, the coupling of upper OHC and monsoon variations, both coordinated by insolation changes on orbital timescales, is critical for regulating the global hydroclimate.

2.
Proc Natl Acad Sci U S A ; 117(13): 7044-7051, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179673

RESUMO

The El Niño-Southern Oscillation (ENSO), which is tightly coupled to the equatorial thermocline in the Pacific, is the dominant source of interannual climate variability, but its long-term evolution in response to climate change remains highly uncertain. This study uses Mg/Ca in planktonic foraminiferal shells to reconstruct sea surface and thermocline water temperatures (SST and TWT) for the past 142 ky in a western equatorial Pacific (WEP) core MD01-2386. Unlike the dominant 100-ky glacial-interglacial cycle recorded by SST and δ18O, which echoes the pattern seen in other WEP sites, the upper ocean thermal gradient shows a clear half-precessional (9.4 ky or 12.7 ky) cycle as indicated by the reconstructed and simulated temperature (ΔT) and δ18O differences between the surface and thermocline waters. This phenomenon is attributed to the interplay of subtropical-to-tropical thermocline anomalies forced by the antiphased meridional insolation gradients in the two hemispheres at the precessional band. In particular, the TWT shows greater variability than SST, and dominates the ΔT changes which couple with the west-east SST difference in the equatorial Pacific at the half-precessional band, implying a decisive role of the tropical thermocline in orbital-scale climate change.

3.
Sci Adv ; 10(37): eadp7855, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39259794

RESUMO

Tropical oceans are the main global water vapor and latent heat sources, but their responses to radiative forcing remain unclear. Here, we investigate oceanic moisture dynamics of the western tropical Pacific (WTP) over the past 210,000 years through an approach of planktonic foraminiferal triple oxygen isotope (Δ'17O). The Δ'17O record is dominated by the precession cycles (~23,000 years), with lower values reflecting higher humidity in concert with higher Northern Hemisphere summer insolation. Our empirical and modeling results, combined with other geological archives, suggest that the enhanced moisture convergence over the WTP largely intensifies changes in the meridional and zonal hydrological cycles, affecting rainfall patterns in East Asia and northern South America. We propose that the insolation-driven WTP moisture dynamics play a pivotal role in regulating tropical hydroclimate.

4.
Data Brief ; 28: 105020, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909118

RESUMO

Site U1489 was drilled during the International Ocean Discovery Program (IODP) Expedition 363 and is located on the western slope of the southern Eauripik Rise (2.12°N, 141.03°E, 3421 m water depth). We collected 183 samples from the upper ∼84 m of Site U1489 with an average sampling interval of ~50 cm, and performed the analyses of sediment washing and sieving, benthic foraminifera stable carbon and oxygen isotopes, and the relative abundance of selected benthic foraminifera. The data of these analyses are discussed in "Possible linkage between the long-eccentricity marine carbon cycle and the deep-Pacific circulation: Western equatorial Pacific benthic foraminifera evidences of the last 4Ma" [1], which provide a series of Plio-Pleistocene records of the western equatorial Pacific serving for regional and global comparisons of changes in the deep Pacific water mass properties and circulation.

5.
Sci Adv ; 6(42)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33055161

RESUMO

Dynamics driving the El Niño-Southern Oscillation (ENSO) over longer-than-interannual time scales are poorly understood. Here, we compile thermocline temperature records of the Indo-Pacific warm pool over the past 25,000 years, which reveal a major warming in the Early Holocene and a secondary warming in the Middle Holocene. We suggest that the first thermocline warming corresponds to heat transport of southern Pacific shallow overturning circulation driven by June (austral winter) insolation maximum. The second thermocline warming follows equatorial September insolation maximum, which may have caused a steeper west-east upper-ocean thermal gradient and an intensified Walker circulation in the equatorial Pacific. We propose that the warm pool thermocline warming ultimately reduced the interannual ENSO activity in the Early to Middle Holocene. Thus, a substantially increased oceanic heat content of the warm pool, acting as a negative feedback for ENSO in the past, may play its role in the ongoing global warming.

6.
Sci Rep ; 8(1): 5678, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632322

RESUMO

The hydrological characteristics, including temperatures and salinities, of the upper water over the last 30 ka from two sites connected by the Indonesian Throughflow (ITF) across the Makassar Strait are reconstructed and compared. The thermocline hydrological gradient in the strait was larger during 13.4~19 ka BP and 24.2~27 ka BP than that in the Holocene. The weakened ITF during those periods in the last glacial period, corresponding to the decreased trade wind stress under an El Niño-like climate mean state, likely accounts for the increased thermocline gradient. The thermocline water temperature variabilities of the two sites, in particular the highest peaks at ~7 ka BP, are different from the records of the open western Pacific. Reoccurrence of the South China Sea Throughflow and thus a decreased surface throughflow along the Makassar Strait perhaps led to a warmer peak of thermocline temperature at ~7 ka BP than at ~11 ka BP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA