Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 599(7884): 262-267, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34646019

RESUMO

The ability to help and care for others fosters social cohesiveness and is vital to the physical and emotional well-being of social species, including humans1-3. Affiliative social touch, such as allogrooming (grooming behaviour directed towards another individual), is a major type of prosocial behaviour that provides comfort to others1-6. Affiliative touch serves to establish and strengthen social bonds between animals and can help to console distressed conspecifics. However, the neural circuits that promote prosocial affiliative touch have remained unclear. Here we show that mice exhibit affiliative allogrooming behaviour towards distressed partners, providing a consoling effect. The increase in allogrooming occurs in response to different types of stressors and can be elicited by olfactory cues from distressed individuals. Using microendoscopic calcium imaging, we find that neural activity in the medial amygdala (MeA) responds differentially to naive and distressed conspecifics and encodes allogrooming behaviour. Through intersectional functional manipulations, we establish a direct causal role of the MeA in controlling affiliative allogrooming and identify a select, tachykinin-expressing subpopulation of MeA GABAergic (γ-aminobutyric-acid-expressing) neurons that promote this behaviour through their projections to the medial preoptic area. Together, our study demonstrates that mice display prosocial comforting behaviour and reveals a neural circuit mechanism that underlies the encoding and control of affiliative touch during prosocial interactions.


Assuntos
Emoções , Comportamento Social , Estresse Psicológico , Tato/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Cooperativo , Feminino , Masculino , Camundongos , Vias Neurais , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Estresse Psicológico/prevenção & controle , Estresse Psicológico/psicologia
2.
J Cereb Blood Flow Metab ; 39(9): 1678-1692, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29739261

RESUMO

Cerebral edema is exacerbated in diabetic ischemic stroke through poorly understood mechanisms. We showed previously that blood-brain barrier (BBB) Na-K-Cl cotransport (NKCC) and Na/H exchange (NHE) are major contributors to edema formation in normoglycemic ischemic stroke. Here, we investigated whether hyperglycemia-exacerbated edema involves changes in BBB NKCC and NHE expression and/or activity and whether inhibition of NKCC or NHE effectively reduces edema and injury in a type I diabetic model of hyperglycemic stroke. Cerebral microvascular endothelial cell (CMEC) NKCC and NHE abundances and activities were determined by Western blot, radioisotopic flux and microspectrofluorometric methods. Cerebral edema and Na in rats subjected to middle cerebral artery occlusion (MCAO) were assessed by nuclear magnetic resonance methods. Hyperglycemia exposures of 1-7d significantly increased CMEC NKCC and NHE abundance and activity. Subsequent exposure to ischemic factors caused more robust increases in NKCC and NHE activities than in normoglycemic CMEC. MCAO-induced edema and brain Na uptake were greater in hyperglycemic rats. Intravenous bumetanide and HOE-642 significantly attenuated edema, brain Na uptake and ischemic injury. Our findings provide evidence that BBB NKCC and NHE contribute to increased edema in hyperglycemic stroke, suggesting that these Na transporters are promising therapeutic targets for reducing damage in diabetic stroke.


Assuntos
Edema Encefálico/complicações , Hiperglicemia/complicações , Infarto da Artéria Cerebral Média/complicações , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Bovinos , Linhagem Celular , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Trocadores de Sódio-Hidrogênio/análise , Simportadores de Cloreto de Sódio-Potássio/análise , Estreptozocina
3.
J Comp Neurol ; 525(7): 1707-1730, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035673

RESUMO

Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAA Rα1 ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Espinhas Dendríticas/ultraestrutura , Interneurônios/ultraestrutura , Retina/citologia , Animais , Feminino , Imuno-Histoquímica , Masculino , Microscopia Confocal , Ratos , Ratos Endogâmicos Lew , Ratos Long-Evans , Tirosina 3-Mono-Oxigenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA