RESUMO
Phe-Met-Arg-Phe-amide (FMRFamide)-activated sodium channels (FaNaCs) are a family of channels activated by the neuropeptide FMRFamide, and, to date, the underlying ligand gating mechanism remains unknown. Here we present the high-resolution cryo-electron microscopy structures of Aplysia californica FaNaC in both apo and FMRFamide-bound states. AcFaNaC forms a chalice-shaped trimer and possesses several notable features, including two FaNaC-specific insertion regions, a distinct finger domain and non-domain-swapped transmembrane helix 2 in the transmembrane domain (TMD). One FMRFamide binds to each subunit in a cleft located in the top-most region of the extracellular domain, with participation of residues from the neighboring subunit. Bound FMRFamide adopts an extended conformation. FMRFamide binds tightly to A. californica FaNaC in an N terminus-in manner, which causes collapse of the binding cleft and induces large local conformational rearrangements. Such conformational changes are propagated downward toward the TMD via the palm domain, possibly resulting in outward movement of the TMD and dilation of the ion conduction pore.
Assuntos
Ativação do Canal Iônico , Neuropeptídeos , FMRFamida/metabolismo , FMRFamida/farmacologia , Microscopia Crioeletrônica , Neuropeptídeos/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismoRESUMO
We investigate a 1D trimer optical lattice model. Two kinds of topological oscillating optical transmission phenomena at edges are shown. The exact and the approximate solutions of the system's edge states are obtained with and without the inversion symmetry for this system respectively. Based on the solutions, the existence and the periods of the oscillations can be controlled arbitrarily. Moreover, in a system without inversion symmetry, controlling the incident beam can eliminate both types of oscillations, resulting in a more stable edge state compared to the one with inversion symmetry. This prompts us to reconsider topological systems under symmetry protection.
RESUMO
Preprocessing plays a key role in Raman spectral analysis. However, classical preprocessing algorithms often have issues with reducing Raman peak intensities and changing the peak shape when processing spectra. This paper introduces a unified solution for preprocessing based on a convolutional autoencoder to enhance Raman spectroscopy data. One is a denoising algorithm that uses a convolutional denoising autoencoder (CDAE model), and the other is a baseline correction algorithm based on a convolutional autoencoder (CAE+ model). The CDAE model incorporates two additional convolutional layers in its bottleneck layer for enhanced noise reduction. The CAE+ model not only adds convolutional layers at the bottleneck but also includes a comparison function after the decoding for effective baseline correction. The proposed models were validated using both simulated spectra and experimental spectra measured with a Raman spectrometer system. Comparing their performance with that of traditional signal processing techniques, the results of the CDAE-CAE+ model show improvements in noise reduction and Raman peak preservation.
RESUMO
OBJECTIVE: To analyze and summarize the medical security situation of the snowmobile, sled, and steel frame snowmobile tracks at the National Sliding Centre, and to provide experience for future event hosting and medical security work for mass ice and snow sports. METHODS: Retrospective analysis of injuries and treatment of athletes participating in the International Training Week and World Cup for Ski, Sled, and Steel Frame Ski from October to November 2021(hereinafter referred to as "International Training Week"), as well as the Ski, Sled, and Steel Frame Ski events at the Beijing Winter Olympics in February 2022 (hereinafter referred to as the "Beijing Winter Olympics"). We referred to and drew on the "Medical Security Standards for Winter Snow Sports" to develop specific classification standards for analyzing injured areas, types of injuries, and accident locations. RESULTS: A total of 743 athletes participated in the International Training Week and the Beijing Winter Olympics. During the competition, there were 58 incidents of overturning, prying, and collision, of which 28 (28 athletes) were injured, accounting for 48.3% of the total accidents and 3.8% of the total number of athletes. Among them, there were 9 males (32.1%) and 19 females (67.9%), with an average age of (26.3 ± 4.7) years. Among the 28 injured athletes, 20 cases (71.4%) received on-site treatment for Class â injuries, while 8 cases (28.6%) had more severe injuries, including Class â ¡ injuries (7 cases) and Class â ¢ injuries (1 case), which were referred to designated hospitals for further treatment. Among the 28 injured athletes, 3 cases (10.7%) experienced multiple injuries, including 2 cases of 2 injuries and 1 case of 3 injuries. The most common injuries were in the ankle and toes (10/32, 31.3%). Out of 28 injured athletes, one (3.6%) experienced two types of injuries simultaneously, with joint and/or ligament injuries being the most common (11/29, 37.9%). The most accident prone point on the track was the ninth curve (18/58, 31.0%). CONCLUSION: Through the analysis and summary of medical security work, it can provide better experience and reference for the future development of snowmobile, sled, and steel frame snowmobile sports in China, making the National Snowy and Ski Center truly a sustainable Olympic heritage.
Assuntos
Traumatismos em Atletas , Esqui , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Traumatismos em Atletas/epidemiologia , Traumatismos em Atletas/terapia , Pequim/epidemiologia , Estudos Retrospectivos , AçoRESUMO
Medium-sized ring-containing organic molecules, especially seven-membered rings, are significant structural motifs. However, such frameworks are considered difficult structures to access owing to entropic effects and transannular interactions. Compared to the construction of five and six-membered rings, the synthesis of seven-membered rings can be more challenging through traditional cyclization pathways. Büchner reactions are particularly attractive and efficient synthetic strategies to construct functionalized seven-membered ring products from the benzenoid double bond with carbene. In recent years, the field of transition-metal-catalyzed Büchner ring expansion reactions of alkynes has experienced a speedy development and a diverse array of efficient synthetic procedures have been disclosed under mild experimental conditions, as the synthesis of synthetically challenging seven-membered rings is easily achieved. In this review, we will focus on the recent progress in the transition-metal-catalyzed Büchner reaction of alkynes and the mechanistic rationale is depicted where possible, with the reactions being sorted according to the type of catalyst.
RESUMO
At present, birefringent materials face a limited selection of large structural anisotropic functional modules (FMs). In this paper, we present a series of linear units which belong to the D∞h point group represented by (BO2)- proposed as novel birefringent active FMs. By analyzing the molecular orbital of the (BO2)- unit, it is found that there are relatively fewer non-bonding orbitals in (BO2)- than in (BO3)3- and the delocalized π bonds in (BO2)- appear in shallow energy levels, which are easily excited. Through first-principles modeling and simulation, it is found that the delocalized π bonds in (BO2)- can still show obvious transition processes, which produce a significant gain to the birefringence. Besides, a series of compounds containing linear anionic frameworks which also belong to the D∞h point group show excellent optical anisotropy in the same way. Therefore, the linear anionic basic units which belong to the D∞h point group have the great potential to become new birefringent FMs.
RESUMO
We propose a mechanism to achieve the group velocity control of bifurcation light via an imaginary coupling effect in the non-reciprocal lattice. The physical model is composed of two-layer photonic lattices with non-reciprocal coupling in each unit cell, which can support a real energy spectrum with a pair of Dirac points due to the hermicity. Furthermore, we show that the systems experience topological phase transition at the Dirac points, allowing the existence of topological edge states on the left or right boundaries of respective lattice layers. By adjusting the imaginary coupling and the wave number, the group velocity of the light wave can be manipulated, and bifurcation light transmission can be achieved both at the Dirac points and the condition without the group velocity dispersion. Our work might guide the design of photonic directional couplers with group velocity control functions.
RESUMO
A new sodium hydroxyfluorooxoborate, NaB3O4F(OH) (NBOFH), was discovered and synthesized. NBOFH features the unprecedented [B3O4F(OH)] infinite chain constructed by the novel fundamental building block (FBB) of [B3O5F(OH)]. NBOFH has a large birefringence of 0.097 at 1064 nm and short ultraviolet (UV) cutoff edge below 200 nm. First-principles calculations and response electron distribution anisotropy (REDA) were performed to explain the structure-property relationships. This work provides a novel strategy for the synthesis of deep-ultraviolet birefringent crystals and enriches the structural diversity of the emerging hydroxyfluorooxoborates.
RESUMO
BACKGROUND: Emerging evidence reveals that the initiation and development of human cancers, including colorectal cancer (CRC), are associated with the deregulation of circular RNAs (circRNAs). Our study intended to disclose the role of circ_0026416 in the malignant behaviors of CRC. METHODS: The detection for circ_0026416 expression, miR-545-3p expression, and myosin VI (MYO6) mRNA expression was performed using quantitative real-time PCR (qPCR). CCK-8 assay, colony formation assay, transwell assay, and flow cytometry assay were applied for functional analysis to monitor cell proliferation, migration, invasion, and apoptosis. The protein levels of MYO6 and epithelial mesenchymal-transition (EMT) markers were detected by western blot. Mouse models were used to determine the role of circ_0026416 in vivo. The potential relationship between miR-545-3p and circ_0026416 or MYO6 was verified by dual-luciferase reporter assay and RIP assay. RESULTS: The expression of circ_0026416 was increased in CRC tumor tissues and cell lines. Circ_0026416 downregulation inhibited CRC cell proliferation, colony formation, migration, invasion, and EMT but induced cell apoptosis in vitro, and circ_0026416 knockdown also blocked tumor growth in vivo. MiR-545-3p was a target of circ_0026416, and rescue experiments indicated that circ_0026416 knockdown blocked CRC development by enriching miR-545-3p. In addition, miR-545-3p targeted MYO6 and inhibited MYO6 expression. MiR-545-3p enrichment suppressed CRC cell malignant behaviors by sequestering MYO6. Importantly, circ_0026416 knockdown depleted MYO6 expression by enriching miR-545-3p. CONCLUSION: Circ_0026416 downregulation blocked the development of CRC through depleting MYO6 expression by enriching miR-545-3p. HIGHLIGHTS: 1. Circ_0026416 downregulation inhibits CRC development in vitro and in vivo. 2. Circ_0026416 regulates the expression of MYO6 by targeting miR-545-3p. 3. Circ_0026416 governs the miR-545-3p/MYO6 axis to regulate CRC progression.
Assuntos
Neoplasias Colorretais , MicroRNAs , Cadeias Pesadas de Miosina/genética , Animais , Neoplasias Colorretais/genética , Regulação para Baixo , Camundongos , MicroRNAs/genética , Prognóstico , RNA CircularRESUMO
Small for gestational age (SGA) has a high risk of mortality and morbidity and is common in obstetrics. To date, no effective prediction and treatment tools are available. Acting as microRNA (miRNA) sponges and disease biomarkers are clear functions of circular RNAs (circRNAs). However, it is still unknown what role circRNAs act in SGA. To explore the role of circRNAs in SGA, circRNA expression patterns of the umbilical cord and maternal plasma in SGA was assessed. We first evaluated circRNAs in umbilical cord blood of the SGA and appropriate for gestational age (AGA) groups by microarray sequencing. In total, 170 340 circRNAs were sequenced, and 144 circRNAs were significantly upregulated while 977 were markedly downregulated. Has_circRNA15994-13, has_circ_0001359, and has_circ_0001360 were abundant and differentially expressed between the SGA and AGA groups, and confirmed in the umbilical cord and maternal blood specimens by reverse transcription polymerase chain reaction. By combining miRNA microarray data of the SGA placenta tissue in NCBI, it was found that two miRNAs were both hsa_circRNA15994-13 targets and differentially expressed, including hsa-miR-3619-5p and hsa-miR-4741. Further KEEG analysis revealed that the most significant pathway enriched by hsa-miR-3619-5p was Wnt signaling that is closely related to SGA; meanwhile, previous reports demonstrated that hsa-miR-3619-5p directly binds to ß-catenin to accommodate the Wnt/ß-catenin pathway, whereby the suggestive hsa_circRNA15994-13 â hsa-miR-3619-5p â ß-catenin signaling pathway may play an important part in SGA.
Assuntos
Recém-Nascido Pequeno para a Idade Gestacional/sangue , Plasma/metabolismo , RNA Circular/sangue , RNA Circular/genética , Cordão Umbilical/metabolismo , Feminino , Idade Gestacional , Humanos , Recém-Nascido , MicroRNAs/sangue , MicroRNAs/genética , Gravidez , beta Catenina/sangue , beta Catenina/genéticaRESUMO
Multiplexing metasurfaces have drawn great interest from the microwave to optical regimes. However, previous works often encounter the restriction of insufficient independence and deficient interference suppression among different channels. Herein, a metasurface platform featuring a dual-wavelength and dual-polarization multiplexing operation is proposed for highly decorrelated and completely independent manipulation of four frequency and polarization states. As illustrative examples, two paradigms of a multiplexing holographic metasurface in which four channels can respond independently without conjugate images are presented, and the measurement results not only validate the feasibility but also exhibit excellent imaging efficiency. The proposed metasurface may thus boost more complex and versatile multi-functional devices.
RESUMO
BACKGROUND: Osteoid osteoma (OO) is a common benign bone tumour that is rarely found in the talus. Its nidus is difficult to detect on early imaging. The atypical symptoms of OO and the presence of concurrent trauma or sports injuries may lead to misdiagnosis and delayed treatment. We herein analyse a case of misdiagnosis of OO of the talus and discuss how to improve the early diagnosis of this rare lesion, thereby permitting rapid treatment. CASE PRESENTATION: A 23-year-old man with a history of left ankle sprains and chronic pain was diagnosed with another ankle sprain and managed conservatively based on normal X-ray findings. After 1 year of recurring pain, he was diagnosed with ankle traumatic arthritis and underwent arthroscopic surgery. His preoperative ankle X-ray findings were still normal, and magnetic resonance imaging at that time demonstrated bone marrow oedema of the left talus. His symptoms reappeared shortly after surgery and progressively worsened. Magnetic resonance imaging performed 3 months after surgery demonstrated widespread bone marrow oedema of the talus. The patient presented to our hospital for pain assessment and was diagnosed with OO of the talus 3 years after his symptoms began. Preoperative computed tomography (CT) demonstrated a typical nidus of OO of the talus. After a second surgery, the patient's symptoms completely resolved, and pathologic examination confirmed that the lesion was OO. The patient recovered 3 months later and was able to walk normally. CONCLUSIONS: OO of the ankle joint exhibits a progressive course and is difficult to diagnose at an early stage. Patients with OO of the talus often have atypical imaging findings, no signs of ankle instability, and no anterior talofibular ligament tenderness. CT is valuable for diagnosing OO, although multiple CT scans may be required to detect the nidus. Proper imaging helps doctors to achieve the correct diagnosis early in the disease course, significantly shortening the treatment cycle and improving the patient's quality of life.
Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Erros de Diagnóstico , Osteoma Osteoide/diagnóstico por imagem , Tálus/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Seguimentos , Humanos , Masculino , Osteoma Osteoide/cirurgia , Tálus/cirurgia , Adulto JovemRESUMO
Vitiligo is a common skin disease for which immunomodulating calcineurin inhibitors have been considered reasonable treatment. We searched the MEDLINE, Embase, and Cochrane central register of controlled trials databases for articles published prior to September 2014. Thirteen studies were included in the meta-analysis. After pooling the trials, we concluded that calcineurin inhibitors showed a better therapeutic effect on vitiligo than placebo, according to lesion report (RR = 2.62, 95%CI, 1.39-4.93, p = 0.003) and patient report (RR = 1.42, 95%, 0.87-2.31, p = 0.157). Subgroup analysis was performed to determine whether the combination with phototherapy was a source of heterogeneity. The trial sequence analysis indicated that the results of combined therapy by lesion report were reliable and conclusive. However, in the patient report trials, the frequency of lesions on the hand and foot was higher, and the effect of combined therapy was still not significant. Calcineurin inhibitors showed a better therapeutic effect than placebo in the treatment of vitiligo with phototherapy. However, the typical UV-resistant sites (i.e., hand and foot) were still difficult to cure even with combined therapy. Because of concerns about photocarcinogenesis, the clinical application of combined therapy should be explored with caution.
Assuntos
Inibidores de Calcineurina/uso terapêutico , Fototerapia/métodos , Vitiligo/terapia , Inibidores de Calcineurina/administração & dosagem , Terapia Combinada , Humanos , Vitiligo/patologiaRESUMO
The occurrence, development, and decline of ovarian function are the foundation in women's whole life stages, which reflect the process beginning from embryo formation to the aging. Correct assessment of ovarian function is significant for evaluating the potential reproductive ability and predicting the age of menopause, as well as providing both individualized and proper treatment and preventive care based on physiological characteristics of women in different phases. Ovarian reserve (OR) is used to predict the potential fertility of women by evaluating the follicles and the quantity and quality of eggs. Currently, there are multiple indexes used to evaluate ovarian reserve, including anti-Millerian hormone (AMH), follicle-stimulating hormone (FSH), estradiol (E2), inhibin B, antral follicle count (AFC), etc. Although some scholars combine multiple indexes to evaluate the ovarian function, these indexes are far less accurate, detailed, and comprehensive. To find an ideal method for evaluation of ovarian reserve is the hotspot in research of reproductive endocrine. The present authors, for the first time, put forward a classification system of ovarian reserve function after summarizing numerous cases. It can both accurately and effectively evaluate the ovarian function quantitatively. It is of great help in making clinical decisions and of great significance in future development.
Assuntos
Ovário/fisiologia , Adulto , Hormônio Antimülleriano/sangue , Estradiol/sangue , Estudos de Viabilidade , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Inibinas/sangue , Reserva Ovariana/fisiologiaRESUMO
Origami robots have garnered attention due to their versatile deformation and potential applications, particularly for medical applications. In this article, we propose a Yoshimura continuum manipulator (YoMo) that can achieve accurate control of the tip position for the magnetic resonance (MR) environment. The YoMo made of a single piece of paper is cable-actuated to generate the bending and shortening deformation. The paper-based YoMo attached to an arc frame can readily function under different orientations in the MR environment. The design and fabrication of YoMo were formulated according to the Yoshimura folding pattern. The kinematics model based on constant curvature assumption was derived as a benchmark method to predict the tip position of the YoMo. The Koopman operator theory was applied to describe the relationship between the tip position and the length change under different orientations. The linear quadratic regulator integrated into the Koopman-based model (K-LQR) was adopted to achieve the trajectory tracking. Comprehensive experiments were carried out to examine the proposed YoMo, its modeling and control methods. The performance of the YoMo including stiffness and workspace was characterized via a customized test setup. The Koopman-based method demonstrates the superiority over the constant curvature-based model to predict the tip position. The K-LQR control method was examined with different trajectories, and the impact of the orientation, speed, and different trajectories were taken into consideration. The results demonstrate the YoMo is capable of achieving trajectory tracking with satisfied accuracy, indicating its potential for medical applications in the MR environment.
RESUMO
After myocardial infarction (MI), cardiac resident CCR2+ macrophages release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in recruiting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. We hypothesized that neutralizing the MCP-1 secreted by cardiac resident CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes and their differentiation into macrophages. In this work, we developed nanoparticles that target the infarcted heart, specifically accumulating in the damaged area after intravenous (IV) administration, and docking onto CCR2+ macrophages. These nanoparticles were designed to slowly release an MCP-1 binding peptide, HSWRHFHTLGGG (HSW), which neutralizes the upregulated MCP-1. We showed that the HSW reduced monocyte migration, inhibited pro-inflammatory cytokine upregulation, and suppressed myofibroblast differentiation in vitro. After IV delivery, the released HSW significantly decreased monocyte recruitment and pro-inflammatory macrophage density, increased cardiac cell survival, attenuated cardiac fibrosis, and improved cardiac function. Taken together, our findings support the strategy of MCP-1 neutralization at the acute phase of MI as a promising way to alleviate post-MI inflammation. STATEMENT OF SIGNIFICANCE: After a myocardial infarction (MI), CCR2+ macrophages resident in the heart release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in attracting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. In this work, we tested the hypothesis that neutralizing the MCP-1 secreted by cardiac CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes.
RESUMO
Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K+ channels, is a major determinant of the ability of neurons to generate high-frequency action potentials. However, little is known about its role in chronic inflammatory pain. Here, we show that although Kv3.1 mRNA expression was unchanged, Kv3.1 protein expression was decreased in the dorsal spinal horn of mice after plantar injection of complete Freund's adjuvant (CFA), a mouse model of inflammatory pain. Upregulating Kv3.1 expression alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas downregulating Kv3.1 induced nociception-like behaviors. Additionally, we found that ubiquitin protein ligase E3 component n-recognin 5 (UBR5), a key factor in the initiation of chronic pain, binds directly to Kv3.1 to drive its ubiquitin degradation. Intrathecal injection of the peptide TP-CH-401, a Kv3.1 ubiquitination motif sequence, rescued the decrease in Kv3.1 expression and Kv currents through competitive binding to UBR5, and consequently attenuated mechanical and thermal hypersensitivity. These findings demonstrate a previously unrecognized pathway of Kv3.1 abrogation by UBR5 and indicate that Kv3.1 is critically involved in the regulation of nociceptive behavior. Kv3.1 is thus a promising new target for treating inflammatory pain.
RESUMO
Nerve regeneration and re-innervation are usually difficult after peripheral nerve injury. Epineurium neurorrhaphy to recover the nerve continuity is the traditional choice of peripheral nerve mutilation without nerve defects, whereas the functional recovery remains quite unsatisfactory. Based on previous research in SD rats and Rhesus Monkeys, a multiple centers clinical trial about biodegradable conduit small gap tubulization for peripheral nerve mutilation to substitute traditional epineurial neurorrhaphy was carried out. Herein, the authors reviewed the literature that focused on peripheral nerve injury and possible clinical application, and confirmed the clinical possibilities of biodegradable conduit small gap tubulization to substitute traditional epineurial neurorrhaphy for peripheral nerve mutilation. The biodegradable conduit small gap tubulization to substitute traditional epineurial neurorrhaphy for peripheral nerve mutilation may be a revolutionary innovation in peripheral nerve injury and repair field.
Assuntos
Implantes Absorvíveis , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/fisiopatologia , Animais , Humanos , Macaca mulatta , Regeneração Nervosa , Ratos , Recuperação de Função Fisiológica , Nervo Isquiático/lesõesRESUMO
PURPOSE: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is involved in the pathogenesis of atherosclerosis, especially in advanced plaques. In the present study, the abilities of darapladib, a selective Lp-PLA(2) inhibitor, and lentivirus-mediated Lp-PLA(2) silencing on inflammation and atherosclerosis in apolipoprotein E-deficient mice were compared. METHODS: Apolipoprotein E-deficient mice were fed on a high-fat diet and a constrictive collar was placed around the left carotid artery to induce plaque formation. The mice were randomly divided into control, negative control (NC), darapladib and RNA interference (RNAi) groups. Eight weeks after surgery, lentivirus-mediated RNAi construct or darapladib were used to decrease the expression of Lp-PLA(2). Plaques were collected five weeks later for histological analysis. Inflammatory gene expression in the atherosclerotic lesions were then determined at the mRNA and protein level. RESULTS: The expression of pro-inflammatory cytokines was significantly reduced in the treatment group, compared to nontreatment group, whereas the plasma concentration of anti-inflammatory cytokines increased markedly. Moreover, our results demonstrated a significant reduction in plaque lipid content, as well as a rise in collagen content following Lp-PLA(2) inhibition. Interestingly, when comparing the two methods of Lp-PLA(2) inhibition, animals treated with Lp-PLA(2) RNAi were found to exhibit lower plaque areas and enhanced improvement of plaque stability as compared with animals treated with darapladib. Darapladib had no attenuating effect on atherosclerotic plaque area. These therapeutic effects were independent of plasma lipoprotein levels. CONCLUSIONS: Lp-PLA(2) inhibition by darapladib or lentivirus-mediated RNAi ameliorated inflammation and atherosclerosis in apolipoprotein E-deficient mice. The effect was more prominent in the RNAi group.