Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Genomics ; 12(1): 138, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623605

RESUMO

BACKGROUND: Healthcare providers increasingly use information about pathogenic variants in cancer predisposition genes, including sequence variants and large rearrangements (LRs), in medical management decisions. While sequence variant detection is typically robust, LRs can be difficult to detect and characterize and may be underreported as a cause for hereditary cancer risk. This report describes the outcomes of hereditary cancer genetic testing using a comprehensive strategy that employs next-generation sequencing (NGS) for LR detection, coupled with LR confirmation using repeat hybrid capture NGS, microarray comparative genomic hybridization (microarray-CGH), and/or multiplex ligation-dependent probe amplification (MLPA). METHODS: Sequencing and LR analysis were conducted in a consecutive series of 376,159 individuals who received clinical testing with a hereditary pan-cancer gene panel from September 2013 through May 2017. NGS dosage analysis was used to evaluate potential deletions or duplications, with controls in place to exclude pseudogene reads. Samples positive for a putative LR based on NGS were confirmed using a comprehensive approach that included targeted microarray-CGH and/or MLPA analysis, with further examination as needed to ascertain the nature of the LR. RESULTS: A total of 3461 LRs were identified and classified as a deleterious mutation (DM), suspected deleterious mutation (SDM) or variant of uncertain significance. Pathogenic LRs (DM/SDM) accounted for the majority of LRs (67.7%), the largest proportion of which were deletions (86.1%), followed by duplications (11.3%), insertions (1.8%), triplications (0.5%), and inversions (0.3%). Several cases presented illustrate that the laboratory approach employed here can ensure consistent identification and accurate characterization of LRs. In the absence of this comprehensive testing strategy, 9% of LRs identified in this testing population might have been missed, potentially leading to inappropriate medical management in as many as 210 individuals referred for hereditary cancer testing. CONCLUSIONS: These data show that copy number analysis using NGS coupled with confirmatory testing reliably detects and characterizes LRs. Further, LRs comprise a substantial proportion (7.2%) of pathogenic variants identified by the test. A robust and accurate LR identification strategy is an essential component of a high-quality genetic testing program, enabling clinicians to optimize patient medical management decisions.


Assuntos
Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Estudos de Casos e Controles , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Duplicação Gênica , Humanos , Mutagênese Insercional , Neoplasias/diagnóstico , Análise de Sequência de DNA , Deleção de Sequência
2.
Cancer Genet ; 216-217: 159-169, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29025590

RESUMO

Cancer risks have been previously reported for some retrotransposon element (RE) insertions; however, detection of these insertions is technically challenging and very few oncogenic RE insertions have been reported. Here we evaluate RE insertions identified during hereditary cancer genetic testing using a comprehensive testing strategy. Individuals who had single-syndrome or pan-cancer hereditary cancer genetic testing from February 2004 to March 2017 were included. RE insertions were identified using Sanger sequencing, Next Generation Sequencing, or multiplex quantitative PCR, and further characterized using targeted PCR and sequencing analysis. Personal cancer history, ancestry, and haplotype were evaluated. A total of 37 unique RE insertions were identified in 10 genes, affecting 211 individuals. BRCA2 accounted for 45.9% (17/37) of all unique RE insertions. Several RE insertions were detected with high frequency in populations of conserved ancestry wherein up to 100% of carriers shared a high degree of haplotype conservation, suggesting founder effects. Our comprehensive testing strategy resulted in a substantial increase in the number of reported oncogenic RE insertions, several of which may have possible founder effects. Collectively, these data show that the detection of RE insertions is an important component of hereditary cancer genetic testing and may be more prevalent than previously reported.


Assuntos
Genes Neoplásicos , Predisposição Genética para Doença , Mutagênese Insercional/genética , Neoplasias/genética , Retroelementos/genética , Elementos Alu/genética , Sequência de Bases , Efeito Fundador , Haplótipos/genética , Humanos , Mutação/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA