Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 4(1): lqab125, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156021

RESUMO

Deep targeted sequencing technologies are still not widely used in clinical practice due to the complexity of the methods and their cost. The Molecular Inversion Probes (MIP) technology is cost effective and scalable in the number of targets, however, suffers from low overall performance especially in GC rich regions. In order to improve the MIP performance, we sequenced a large cohort of healthy individuals (n = 4417), with a panel of 616 MIPs, at high depth in duplicates. To improve the previous state-of-the-art statistical model for low variant allele frequency, we selected 4635 potentially positive variants and validated them using amplicon sequencing. Using machine learning prediction tools, we significantly improved precision of 10-56.25% (P < 0.0004) to detect variants with VAF > 0.005. We further developed biochemically modified MIP protocol and improved its turn-around-time to ∼4 h. Our new biochemistry significantly improved uniformity, GC-Rich regions coverage, and enabled 95% on target reads in a large MIP panel of 8349 genomic targets. Overall, we demonstrate an enhancement of the MIP targeted sequencing approach in both detection of low frequency variants and in other key parameters, paving its way to become an ultrafast cost-effective research and clinical diagnostic tool.

2.
Front Microbiol ; 11: 189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210923

RESUMO

Bacterial resistance to antibiotics is a major concern worldwide, leading to an extensive search for alternative drugs. Promising candidates are antimicrobial peptides (AMPs), innate immunity molecules, shown to be highly efficient against multidrug resistant bacteria. Therefore, it is essential to study bacterial resistance mechanisms against them. For that purpose, we used experimental evolution, and isolated a Salmonella enterica serovar typhimurium-resistant line to the AMP 4DK5L7. This AMP displayed promising features including widespread activity against Gram-negative bacteria and protection from proteolytic degradation. However, the resistance that evolved in the isolated strain was particularly high. Whole genome sequencing revealed that five spontaneous mutations had evolved. Of these, three are novel in the context of acquired AMP resistance. Two mutations are related to the AcrAB-TolC multidrug efflux pump. One occurred in AcrB, the substrate-binding domain of the system, and the second in RamR, a transcriptional regulator of the system. Together, the mutations increased the minimal inhibitory concentration (MIC) by twofold toward this AMP. Moreover, the mutation in AcrB induced hypersusceptibility toward ampicillin and colistin. The last mutation occurred in Skp, a periplasmic chaperone that participates in the biogenesis of outer membrane proteins (OMPs). This mutation increased the MIC by twofold to 4DK5L7 and by fourfold to another AMP, seg5D. Proteomic analysis revealed that the mutation abolished Skp expression, reduced OMP abundance, and increased DegP levels. DegP, a protease that was reported to have an additional chaperone activity, escorts OMPs through the periplasm along with Skp, but is also associated with AMP resistance. In conclusion, our data demonstrate that both loss of Skp and manipulation of the AcrAB-TolC system are alternative strategies of AMP acquired resistance in Salmonella typhimurium and might represent a common mechanism in other Gram-negative bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA