Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Neurophysiol ; 131(4): 652-667, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381528

RESUMO

The differentiation between continuous and discrete actions is key for behavioral neuroscience. Although many studies have characterized eye-hand coordination during discrete (e.g., reaching) and continuous (e.g., pursuit tracking) actions, all these studies were conducted separately, using different setups and participants. In addition, how eye-hand coordination might operate at the frontier between discrete and continuous movements remains unexplored. Here we filled these gaps by means of a task that could elicit different movement dynamics. Twenty-eight participants were asked to simultaneously track with their eyes and a joystick a visual target that followed an unpredictable trajectory and whose position was updated at different rates (from 1.5 to 240 Hz). This procedure allowed us to examine actions ranging from discrete point-to-point movements (low refresh rate) to continuous pursuit (high refresh rate). For comparison, we also tested a manual tracking condition with the eyes fixed and a pure eye tracking condition (hand fixed). The results showed an abrupt transition between discrete and continuous hand movements around 3 Hz contrasting with a smooth trade-off between fixations and smooth pursuit. Nevertheless, hand and eye tracking accuracy remained strongly correlated, with each of these depending on whether the other effector was recruited. Moreover, gaze-cursor distance and lag were smaller when eye and hand performed the task conjointly than separately. Altogether, despite some dissimilarities in eye and hand dynamics when transitioning between discrete and continuous movements, our results emphasize that eye-hand coordination continues to smoothly operate and support the notion of synergies across eye movement types.NEW & NOTEWORTHY The differentiation between continuous and discrete actions is key for behavioral neuroscience. By using a visuomotor task in which we manipulate the target refresh rate to trigger different movement dynamics, we explored eye-hand coordination all the way from discrete to continuous actions. Despite abrupt changes in hand dynamics, eye-hand coordination continues to operate via a gradual trade-off between fixations and smooth pursuit, an observation confirming the notion of synergies across eye movement types.


Assuntos
Movimentos Oculares , Desempenho Psicomotor , Humanos , Mãos , Acompanhamento Ocular Uniforme , Movimento , Movimentos Sacádicos
2.
Psychol Res ; 88(2): 594-606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37466674

RESUMO

To date, interlimb transfer following visuomotor adaptation has been mainly investigated through discrete reaching movements. Here we explored this issue in the context of continuous manual tracking, a task in which the contribution of online feedback mechanisms is crucial, and in which there is a well-established right (dominant) hand advantage under baseline conditions. We had two objectives (1) to determine whether this preexisting hand asymmetry would persist under visuomotor rotation, (2) to examine interlimb transfer by assessing whether prior experience with the rotation by one hand benefit to the other hand. To address these, 44 right-handed participants were asked to move a joystick and to track a visual target following a rather unpredictable trajectory. Visuomotor adaptation was elicited by introducing a 90° rotation between the joystick motion and the cursor motion. Half of the participants adapted to the rotation first with the right hand, and then with the left, while the other half performed the opposite protocol. As expected during baseline trials, the left hand was less accurate while also exhibiting more variable and exploratory behavior. However, participants exhibited a left hand advantage during first exposure to the rotation. Moreover, interlimb transfer was observed albeit more strongly from the left to the right hand. We suggest that the less effective and more variable/exploratory control strategy of the left hand promoted its adaptation, which incidentally favored transfer from left to right hand. Altogether, this study speaks for further attention to the dominant/non-dominant asymmetry during baseline before examining interlimb transfer of adaptation.


Assuntos
Mãos , Desempenho Psicomotor , Humanos , Extremidade Superior , Movimento , Rotação , Adaptação Fisiológica , Lateralidade Funcional
3.
J Neurophysiol ; 128(3): 480-493, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858120

RESUMO

Reaching and manual tracking are two very common tasks for studying human sensorimotor processes. Although these motor tasks rely both on feedforward and feedback processes, emphasis is more on feedforward processes for reaching and feedback processes for tracking. The extent to which feedforward and feedback processes are interrelated when being updated is not settled yet. Here, using reaching and tracking as proxies, we examined the bidirectional relationship between the update of feedforward and feedback processes. Forty right-handed participants were asked to move a joystick so as to either track a target moving rather unpredictably (pursuit tracking) or to make fast pointing movements toward a static target (center-out reaching task). Visuomotor adaptation was elicited by introducing a 45° rotation between the joystick motion and the cursor motion. Half of the participants adapted to rotation first via reaching movements and then with pursuit tracking, whereas the other half performed both tasks in opposite order. Group comparisons revealed a strong asymmetrical transfer of adaptation between tasks. Namely, although nearly complete transfer of adaptation was observed from reaching to tracking, only modest transfer was found from tracking to reaching. A control experiment (n = 10) revealed that making target motion fully predictable did not impact the latter finding. One possible interpretation is that the update of feedforward processes contributes directly to feedback processes, but the update of feedback processes engaged in tracking can be performed in isolation. These results suggest that reaching movements are supported by broader (i.e. more universal) mechanisms than tracking ones.NEW & NOTEWORTHY Reaching and manual tracking are thought to rely differently on feedforward and feedback processes. Here, we show that although nearly complete transfer of visuomotor adaptation occurs from reaching to tracking, only minimal transfer is found from tracking to reaching. Even though the update of feedforward processes (key for reaching) proved directly useful to feedback processes (key for tracking), the strong asymmetrical transfer suggests that feedback control can be updated independently from feedforward adaptation.


Assuntos
Desempenho Psicomotor , Percepção Visual , Adaptação Fisiológica , Retroalimentação , Retroalimentação Sensorial , Humanos , Movimento , Rotação
4.
J Neurophysiol ; 126(5): 1685-1697, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614368

RESUMO

Adapting hand movements to changes in our body or the environment is essential for skilled motor behavior, as is the ability to flexibly combine experience gathered in separate contexts. However, it has been shown that when adapting hand movements to two different visuomotor perturbations in succession, interference effects can occur. Here, we investigate whether these interference effects compromise our ability to adapt to the superposition of the two perturbations. Participants tracked with a joystick, a visual target that followed a smooth but an unpredictable trajectory. Four separate groups of participants (total n = 83) completed one block of 50 trials under each of three mappings: one in which the cursor was rotated by 90° (ROTATION), one in which the cursor mimicked the behavior of a mass-spring system (SPRING), and one in which the SPRING and ROTATION mappings were superimposed (SPROT). The order of the blocks differed across groups. Although interference effects were found when switching between SPRING and ROTATION, participants who performed these blocks first performed better in SPROT than participants who had no prior experience with SPRING and ROTATION (i.e., composition). Moreover, participants who started with SPROT exhibited better performance under SPRING and ROTATION than participants who had no prior experience with each of these mappings (i.e., decomposition). Additional analyses confirmed that these effects resulted from components of learning that were specific to the rotational and spring perturbations. These results show that interference effects do not preclude the ability to compose/decompose various forms of visuomotor adaptation.NEW & NOTEWORTHY The ability to compose/decompose task representations is critical for both cognitive and behavioral flexibility. Here, we show that this ability extends to two forms of visuomotor adaptation in which humans have to perform visually guided hand movements. Despite the presence of interference effects when switching between visuomotor maps, we show that participants are able to flexibly compose or decompose knowledge acquired in previous sessions. These results further demonstrate the flexibility of sensorimotor adaptation in humans.


Assuntos
Adaptação Fisiológica/fisiologia , Atividade Motora/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Mãos/fisiologia , Humanos , Masculino , Adulto Jovem
5.
J Cogn Neurosci ; 32(7): 1301-1315, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073350

RESUMO

It is well documented that providing advanced information regarding the spatial location of a target stimulus (i.e., spatial anticipation) or its timing of occurrence (i.e., temporal anticipation) influences reach preparation, reducing RTs. Yet, it remains unknown whether the RT gains attributable to temporal and spatial anticipation are subtended by similar preparatory dynamics. Here, this issue is addressed in humans by investigating EEG beta-band activity during reach preparation. Participants performed a reach RT task in which they initiated a movement as fast as possible toward visual targets following their appearance. Temporal anticipation was manipulated by having the target appear after a constant or variable delay period, whereas spatial anticipation was manipulated by precueing participants about the upcoming target location in advance or not. Results revealed that temporal and spatial anticipation both reduced reach RTs, with no interaction. Interestingly, temporal and spatial anticipation were associated with fundamentally different patterns of beta-band modulations. Temporal anticipation was associated with beta-band desynchronization over contralateral sensorimotor regions specifically around the expected moment of target onset, the magnitude of which was correlated with RT modulations across participants. In contrast, spatial anticipation did not influence sensorimotor activity but rather led to increased beta-band power over bilateral parieto-occipital regions during the entire delay period. These results argue for distinct states of preparation incurred by temporal and spatial anticipation. In particular, sensorimotor beta-band desynchronization may reflect the timely disinhibition of movement-related neuronal ensembles at the expected time of movement initiation, without reflecting its spatial parameters per se.


Assuntos
Objetivos , Desempenho Psicomotor , Antecipação Psicológica , Cognição , Humanos , Motivação , Movimento
6.
J Neurophysiol ; 123(2): 511-521, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693447

RESUMO

When coordinating two hands to achieve a common goal, the nervous system has to assign responsibility to each hand. Optimal control theory suggests that this problem is solved by minimizing costs such as the variability of movement and effort. However, the natural tendency to produce similar movements during bimanual tasks has been somewhat ignored by this approach. We consider a task in which participants were asked to track a moving target by means of a single cursor controlled simultaneously by the two hands. Two types of hand-cursor mappings were tested: one in which the cursor position resulted from the average location of two hands (Mean) and one in which horizontal and vertical positions of the cursor were driven separately by each hand (Split). As expected, unimanual tracking performance was better with the dominant hand than with the more variable nondominant hand. More interestingly, instead of exploiting this effect by increasing the use of the dominant hand, the contributions from both hands remained symmetrical during bimanual cooperative tasks. Indeed, for both mappings, and even after 6min of practice, the right and left hands remained strongly correlated, performing similar movements in extrinsic space. Persistence of this bimanual coupling demonstrates that participants prefer to maintain similar movements at the expense of unnecessary movements (in the Split task) and of increased noise from the nondominant hand (in the Mean task). Altogether, the findings suggest that bimanual tracking exploits hand coordination in space rather than minimizing motor costs associated with variability and effort.NEW & NOTEWORTHY When two hands are coordinated to achieve a common goal, optimal control theory proposes that the brain assigns responsibility to each hand by minimizing movement variability and effort. Nevertheless, we show that participants perform bimanual tracking using similar contributions from the dominant and nondominant hands, despite unnecessary movements and a less accurate nondominant hand. Our findings suggest that bimanual tracking exploits hand coordination in space rather than minimizing motor costs associated with variability and effort.


Assuntos
Mãos/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
7.
J Neurophysiol ; 121(5): 1967-1976, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30943096

RESUMO

Adapting hand movements to changes in our body or the environment is essential for skilled motor behavior. Although eye movements are known to assist hand movement control, how eye movements might contribute to the adaptation of hand movements remains largely unexplored. To determine to what extent eye movements contribute to visuomotor adaptation of hand tracking, participants were asked to track a visual target that followed an unpredictable trajectory with a cursor using a joystick. During blocks of trials, participants were either allowed to look wherever they liked or required to fixate a cross at the center of the screen. Eye movements were tracked to ensure gaze fixation as well as to examine free gaze behavior. The cursor initially responded normally to the joystick, but after several trials, the direction in which it responded was rotated by 90°. Although fixating the eyes had a detrimental influence on hand tracking performance, participants exhibited a rather similar time course of adaptation to rotated visual feedback in the gaze-fixed and gaze-free conditions. More importantly, there was extensive transfer of adaptation between the gaze-fixed and gaze-free conditions. We conclude that although eye movements are relevant for the online control of hand tracking, they do not play an important role in the visuomotor adaptation of such tracking. These results suggest that participants do not adapt by changing the mapping between eye and hand movements, but rather by changing the mapping between hand movements and the cursor's motion independently of eye movements. NEW & NOTEWORTHY Eye movements assist hand movements in everyday activities, but their contribution to visuomotor adaptation remains largely unknown. We compared adaptation of hand tracking under free gaze and fixed gaze. Although our results confirm that following the target with the eyes increases the accuracy of hand movements, they unexpectedly demonstrate that gaze fixation does not hinder adaptation. These results suggest that eye movements have distinct contributions for online control and visuomotor adaptation of hand movements.


Assuntos
Adaptação Fisiológica , Movimentos Oculares , Mãos/fisiologia , Desempenho Psicomotor , Adulto , Feminino , Humanos , Masculino , Rotação
8.
J Vis ; 19(14): 24, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31868897

RESUMO

The ability to track a moving target with the hand has been extensively studied, but few studies have characterized gaze behavior during this task. Here we investigate gaze behavior when participants learn a new mapping between hand and cursor motion, such that the cursor represented the position of a virtual mass attached to the grasped handle via a virtual spring. Depending on the experimental condition, haptic feedback consistent with mass-spring dynamics could also be provided. For comparison a simple one-to-one hand-cursor mapping was also tested. We hypothesized that gaze would be drawn, at times, to the cursor in the mass-spring conditions, especially in the absence of haptic feedback. As expected hand tracking performance was less accurate under the spring mapping, but gaze behavior was virtually unaffected by the spring mapping, regardless of whether haptic feedback was provided. Specifically, relative gaze position between target and cursor, rate of saccades, and gain of smooth pursuit were similar under both mappings and both haptic feedback conditions. We conclude that even when participants are exposed to a challenging hand-cursor mapping, gaze is primarily concerned about ongoing target motion suggesting that peripheral vision is sufficient to monitor cursor position and to update hand movement control.


Assuntos
Mãos/fisiologia , Desempenho Psicomotor , Acompanhamento Ocular Uniforme , Visão Ocular , Adulto , Movimentos Oculares , Retroalimentação Sensorial , Feminino , Humanos , Masculino , Percepção de Movimento , Reprodutibilidade dos Testes , Movimentos Sacádicos , Percepção Visual , Adulto Jovem
9.
J Neurosci ; 37(40): 9730-9740, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28893926

RESUMO

The ability to track a moving target with the eye is substantially improved when the target is self-moved compared with when it is moved by an external agent. To account for this observation, it has been postulated that the oculomotor system has access to hand efference copy, thereby allowing to predict the motion of the visual target. Along this scheme, we tested the effect of transcranial magnetic stimulation (TMS) over the hand area of the primary motor cortex (M1) when human participants (50% females) are asked to track with their eyes a visual target whose horizontal motion is driven by their grip force. We reasoned that, if the output of M1 is used by the oculomotor system to keep track of the target, on top of inducing short latency disturbance of grip force, single-pulse TMS should also quickly disrupt ongoing eye motion. For comparison purposes, the effect of TMS over M1 was monitored when subjects tracked an externally moved target (while keeping their hand at rest or not). In both cases, results showed no alterations in smooth pursuit, meaning that its velocity was unaffected within the 25-125 ms epoch that followed TMS. Overall, our results imply that the output of M1 has limited contribution in driving the eye motion during our eye-hand coordination task. This study suggests that, if hand motor signals are accessed by the oculomotor system, this is upstream of M1.SIGNIFICANCE STATEMENT The ability to coordinate eye and hand actions is central in everyday activity. However, the neural mechanisms underlying this coordination remain to be clarified. A leading hypothesis is that the oculomotor system has access to hand motor signals. Here we explored this possibility by means of transcranial magnetic stimulation (TMS) over the hand area of the primary motor cortex (M1) when humans tracked with the eyes a visual target that was moved by the hand. As expected, ongoing hand action was perturbed 25-30 ms after TMS, but our results fail to show any disruption of eye motion, smooth pursuit velocity being unaffected. This work suggests that, if hand motor signals are accessed by the oculomotor system, this is upstream of M1.


Assuntos
Percepção de Movimento/fisiologia , Córtex Motor/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Movimentos Oculares/fisiologia , Feminino , Mãos/fisiologia , Humanos , Masculino , Tempo de Reação/fisiologia
10.
J Neurophysiol ; 118(5): 2745-2754, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814633

RESUMO

Sensorimotor control requires an accurate estimate of the state of the body. The brain optimizes state estimation by combining sensory signals with predictions of the sensory consequences of motor commands using a forward model. Given that both sensory signals and predictions are uncertain (i.e., noisy), the brain optimally weights the relative reliance on each source of information during adaptation. In support, it is known that uncertainty in the sensory predictions influences the rate and generalization of visuomotor adaptation. We investigated whether uncertainty in the sensory predictions affects the retention of a new visuomotor relationship. This was done by exposing three separate groups to a visuomotor rotation whose mean was common at 15° counterclockwise but whose variance around the mean differed (i.e., SD of 0°, 3.2°, or 4.5°). Retention was assessed by measuring the persistence of the adapted behavior in a no-vision phase. Results revealed that mean reach direction late in adaptation was similar across groups, suggesting it depended mainly on the mean of exposed rotations and was robust to differences in variance. However, retention differed across groups, with higher levels of variance being associated with a more rapid reversion toward nonadapted behavior. A control experiment ruled out the possibility that differences in retention were accounted for by differences in success rates. Exposure to variable rotations may have increased the uncertainty in sensory predictions, making the adapted forward model more labile and susceptible to change or decay.NEW & NOTEWORTHY The brain predicts the sensory consequences of motor commands through a forward model. These predictions are subject to uncertainty. We use visuomotor adaptation and modulate uncertainty in the sensory predictions by manipulating the variance in exposed rotations. Results reveal that variance does not influence the final extent of adaptation but selectively impairs the retention of motor memories. These results suggest that a more uncertain forward model is more susceptible to change or decay.


Assuntos
Adaptação Fisiológica , Memória , Destreza Motora , Percepção Visual , Adaptação Psicológica , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Tempo de Reação , Rotação , Incerteza , Adulto Jovem
11.
J Neurophysiol ; 116(4): 1859-1870, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466129

RESUMO

Previous work has shown that the ability to track with the eye a moving target is substantially improved when the target is self-moved by the subject's hand compared with when being externally moved. Here, we explored a situation in which the mapping between hand movement and target motion was perturbed by simulating an elastic relationship between the hand and target. Our objective was to determine whether the predictive mechanisms driving eye-hand coordination could be updated to accommodate this complex hand-target dynamics. To fully appreciate the behavioral effects of this perturbation, we compared eye tracking performance when self-moving a target with a rigid mapping (simple) and a spring mapping as well as when the subject tracked target trajectories that he/she had previously generated when using the rigid or spring mapping. Concerning the rigid mapping, our results confirmed that smooth pursuit was more accurate when the target was self-moved than externally moved. In contrast, with the spring mapping, eye tracking had initially similar low spatial accuracy (though shorter temporal lag) in the self versus externally moved conditions. However, within ∼5 min of practice, smooth pursuit improved in the self-moved spring condition, up to a level similar to the self-moved rigid condition. Subsequently, when the mapping unexpectedly switched from spring to rigid, the eye initially followed the expected target trajectory and not the real one, thereby suggesting that subjects used an internal representation of the new hand-target dynamics. Overall, these results emphasize the stunning adaptability of smooth pursuit when self-maneuvering objects with complex dynamics.


Assuntos
Movimentos Oculares , Percepção de Movimento , Atividade Motora , Análise de Variância , Medições dos Movimentos Oculares , Feminino , Humanos , Aprendizagem , Masculino , Movimento (Física) , Dinâmica não Linear , Estimulação Luminosa , Psicofísica , Adulto Jovem
12.
J Neurosci ; 33(5): 2229-36, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365258

RESUMO

Numerous studies of motor learning have examined the adaptation of hand trajectories and grip forces when moving grasped objects with novel dynamics. Such objects initially result in both kinematic and kinetic errors; i.e., mismatches between predicted and actual trajectories and between predicted and actual load forces. Here we investigated the contribution of these errors to both trajectory and grip force adaptation. Participants grasped an object with novel dynamics using a precision grip and moved it between two targets. Kinematic errors could be effectively removed using a force channel to constrain hand motion to a straight line. When moving in the channel, participants learned to modulate grip force in synchrony with load force and this learning generalized when movement speed in the channel was doubled. When the channel was removed, these participants continued to effectively modulate grip force but exhibited substantial kinematic errors, equivalent to those seen in participants who did not previously experience the object in the channel. We also found that the rate of grip force adaptation did not depend on whether the object was initially moved with or without a channel. These results indicate that kinematic errors are necessary for trajectory but not grip force adaptation, and that kinetic errors are sufficient for grip force but not trajectory adaptation. Thus, participants can learn a component of the object's dynamics, used to control grip force, based solely on kinetic errors. However, this knowledge is apparently not accessible or usable for controlling the movement trajectory when the channel is removed.


Assuntos
Força da Mão/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Movimento/fisiologia , Suporte de Carga/fisiologia
13.
Sci Data ; 11(1): 951, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214999

RESUMO

3D-ARM-Gaze is a public dataset designed to provide natural arm movements together with visual and gaze information when reaching objects in a wide reachable space from a precisely controlled, comfortably seated posture. Participants were involved in picking and placing objects in various positions and orientations in a virtual environment, whereby a specific procedure maximized the workspace explored while ensuring a consistent seated posture by guiding participants to a predetermined neutral posture via visual feedback from the trunk and shoulders. These experimental settings enabled to capture natural arm movements with high median success rates (>98% objects reached) and minimal compensatory movements. The dataset regroups more than 2.5 million samples recorded from 20 healthy participants performing 14 000 single pick-and-place movements (700 per participant). While initially designed to explore novel prosthesis control strategies based on natural eye-hand and arm coordination, this dataset will also be useful to researchers interested in core sensorimotor control, humanoid robotics, human-robot interactions, as well as for the development and testing of associated solutions in gaze-guided computer vision.


Assuntos
Braço , Movimento , Realidade Virtual , Humanos , Braço/fisiologia , Fixação Ocular , Masculino , Adulto
14.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468329

RESUMO

Simultaneous adaptation to opposite visuomotor perturbations is known to be difficult. It has been shown to be possible only in situations where the two tasks are associated with different contexts, being either a different colored background, a different area of workspace, or a different follow-through movement. However, many of these elements evoke explicit mechanisms that could contribute to storing separate (modular) memories. It remains to be shown whether simultaneous adaptation to multiple perturbations is possible when they are introduced in a fully implicit manner. Here, we sought to test this possibility using a visuomotor perturbation small enough to eliminate explicit awareness. Participants (N = 25) performed center-out reaching movements with a joystick to five targets located 72° apart. Depending on the target, visual feedback of cursor position was either veridical (one target) or could be rotated by +5 or -5° (two targets each). After 300 trials of adaptation (60 to each target), results revealed that participants were able to fully compensate for each of the imposed rotations. Moreover, when veridical visual feedback was restored, participants exhibited after-effects that were consistent with the rotations applied at each target. Questionnaires collected immediately after the experiment confirmed that none of the participants were aware of the perturbations. These results speak for the existence of implicit processes that can smoothly handle small and opposite visual perturbations when these are associated with distinct target locations.


Assuntos
Adaptação Fisiológica , Retroalimentação Sensorial , Desempenho Psicomotor , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Mãos/fisiologia , Movimento/fisiologia , Rotação , Inquéritos e Questionários , Retroalimentação Sensorial/fisiologia , Desempenho Psicomotor/fisiologia , Adaptação Fisiológica/fisiologia , Estimulação Luminosa
15.
J Neurophysiol ; 108(6): 1685-94, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22723677

RESUMO

Accurate control of grip force during object manipulation is necessary to prevent the object from slipping, especially to compensate for the action of gravitational and inertial forces resulting from hand/object motion. The goal of the current study was to assess whether the control of grip force was influenced by visually induced self-motion (i.e., vection), which would normally be accompanied by changes in object load. The main task involved holding a 400-g object between the thumb and the index finger while being seated within a virtual immersive environment that simulated the vertical motion of an elevator across floors. Different visual motions were tested, including oscillatory (0.21 Hz) and constant-speed displacements of the virtual scene. Different arm-loading conditions were also tested: with or without the hand-held object and with or without oscillatory arm motion (0.9 Hz). At the perceptual level, ratings from participants showed that both oscillatory and constant-speed motion of the elevator rapidly induced a long-lasting sensation of self-motion. At the sensorimotor level, vection compellingness altered arm movement control. Spectral analyses revealed that arm motion was entrained by the oscillatory motion of the elevator. However, we found no evidence that grip force used to hold the object was visually affected. Specifically, spectral analyses revealed no component in grip force that would mirror the virtual change in object load associated with the oscillatory motion of the elevator, thereby allowing the grip-to-load force coupling to remain unaffected. Altogether, our findings show that the neural mechanisms underlying vection interfere with arm movement control but do not interfere with the delicate modulation of grip force. More generally, those results provide evidence that the strength of the coupling between the sensorimotor system and the perceptual level can be modulated depending on the effector.


Assuntos
Força da Mão , Ilusões Ópticas , Adolescente , Adulto , Braço/fisiologia , Feminino , Humanos , Masculino , Movimento (Física) , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia
16.
J Neurophysiol ; 107(1): 433-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013237

RESUMO

Humans can learn to manipulate objects with complex dynamics, including nonrigid objects with internal degrees of freedom. The first aim of this study was to assess the contribution of haptic feedback when learning to manipulate a nonrigid object. The second aim was to evaluate how learning without haptic feedback influences subsequent learning with haptic feedback and vice versa. The task involved moving a simulated mass-attached to a grasped handle via a simulated, damped spring-to a target as quickly as possible. In the haptic plus vision (HV) condition, appropriate forces were applied to the handle, which was attached to a robot. In the vision only (V) condition, these forces were turned off. Participants completed 80 trials in each condition, with one-half starting with the HV condition. Both groups exhibited significant learning, as measured by movement time, in both conditions. For the condition performed first, initial performance, learning rate, and final performance were better with haptic feedback. Prior experience in the HV condition led to faster learning and better final performance in the V condition. However, prior experience in the V condition led to slower learning and worse final performance in the HV condition. In the V condition, all participants tended to keep the mass close to the hand. In the HV condition, participants who started with the HV condition allowed the mass to move away from the hand, whereas participants who started with the V condition continued to keep the mass close to the hand. We conclude that haptic feedback as well as prior experience with haptic feedback enhance the ability to control nonrigid objects and that training without haptic feedback can lead to persisting detrimental effects when subsequently dealing with haptic feedback.


Assuntos
Retroalimentação Sensorial/fisiologia , Neurorretroalimentação/fisiologia , Análise e Desempenho de Tarefas , Percepção do Tato/fisiologia , Tato/fisiologia , Transferência de Experiência/fisiologia , Adulto , Feminino , Mãos/fisiologia , Humanos , Masculino
17.
Cortex ; 134: 30-42, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249298

RESUMO

When tracking targets moving in various directions with one's eyes, horizontal components of pursuit are more precise than vertical ones. Is this because horizontal target motion is predicted better or because horizontal movements of the eyes are controlled more precisely? When tracking a visual target with the hand, the eyes also track the target. We investigated whether the directional asymmetries that have been found during isolated eye movements are also present during such manual tracking, and if so, whether individual participants' asymmetry in eye movements is accompanied by a similar asymmetry in hand movements. We examined the data of 62 participants who used a joystick to track a visual target with a cursor. The target followed a smooth but unpredictable trajectory in two dimensions. Both the mean gaze-target distance and the mean cursor-target distance were about 20% larger in the vertical direction than in the horizontal direction. Gaze and cursor both followed the target with a slightly longer delay in the vertical than in the horizontal direction, irrespective of the target's trajectory. The delays of gaze and cursor were correlated, as were their errors in tracking the target. Gaze clearly followed the target rather than the cursor, so the asymmetry in both eye and hand movements presumably results from better predictions of the target's horizontal than of its vertical motion. Altogether this study speaks for the presence of anisotropic predictive processes that are shared across effectors.


Assuntos
Percepção de Movimento , Acompanhamento Ocular Uniforme , Movimentos Oculares , Mãos , Humanos , Movimento , Desempenho Psicomotor
18.
J Neurophysiol ; 104(2): 641-53, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20538774

RESUMO

When we manipulate an object, grip force is adjusted in anticipation of the mechanical consequences of hand motion (i.e., load force) to prevent the object from slipping. This predictive behavior is assumed to rely on an internal representation of the object dynamic properties, which would be elaborated via visual information before the object is grasped and via somatosensory feedback once the object is grasped. Here we examined this view by investigating the effect of delayed visual feedback during dextrous object manipulation. Adult participants manually tracked a sinusoidal target by oscillating a handheld object whose current position was displayed as a cursor on a screen along with the visual target. A delay was introduced between actual object displacement and cursor motion. This delay was linearly increased (from 0 to 300 ms) and decreased within 2-min trials. As previously reported, delayed visual feedback altered performance in manual tracking. Importantly, although the physical properties of the object remained unchanged, delayed visual feedback altered the timing of grip force relative to load force by about 50 ms. Additional experiments showed that this effect was not due to task complexity nor to manual tracking. A model inspired by the behavior of mass-spring systems suggests that delayed visual feedback may have biased the representation of object dynamics. Overall, our findings support the idea that visual feedback of object motion can influence the predictive control of grip force even when the object is grasped.


Assuntos
Retroalimentação Sensorial/fisiologia , Força da Mão/fisiologia , Mãos/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Estatística como Assunto , Fatores de Tempo
19.
Sci Rep ; 10(1): 11863, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681071

RESUMO

There is a growing interest in sex differences in human and animal cognition. However, empirical evidences supporting behavioral and neural sex differences in humans remain sparse. Visuomotor behaviors offer a robust and naturalistic empirical framework to seek for the computational mechanisms underlying sex biases in cognition. In a large group of human participants (N = 127), we investigated sex differences in a visuo-oculo-manual motor task that consists of tracking with the hand a target moving unpredictably. We report a clear male advantage in hand tracking accuracy. We tested whether men and women employ different gaze strategy or hand movement kinematics. Results show no key difference in these distinct visuomotor components. However, highly consistent differences in eye-hand coordination were evidenced by a larger temporal lag between hand motion and target motion in women. This observation echoes with other studies showing a male advantage in manual reaction time to visual stimuli. We propose that the male advantage for visuomotor tracking does not reside in a more reliable gaze strategy, or in more sophisticated hand movements, but rather in a faster decisional process linking visual information about target motion with forthcoming hand, but not eye, actions.


Assuntos
Movimentos Oculares , Desempenho Psicomotor , Percepção Visual , Adulto , Animais , Fenômenos Biomecânicos , Cognição , Feminino , Fixação Ocular , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
20.
Exp Brain Res ; 193(1): 85-94, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18936926

RESUMO

Using a precision grip, 12 participants horizontally oscillated a lightweight object at different movement frequencies (1.0, 1.5, and 2.0 Hz) under two types of elastic load. In the first (CENT), the center of oscillation coincided with the neutral position of the object in the elastic force field, leading to two peaks in load force (LF) per cycle of movement (2:1 frequency ratio). In the second (BACK and FRONT), the neutral elastic force position of the object was located outside the range of movement, thus leading to only one LF peak per cycle of movement (1:1 frequency ratio). Results showed that in BACK and FRONT the coupling between grip force (GF) and LF (as reflected by coefficients of correlations) remained strong for all movement frequencies. In contrast, this coupling decreased in CENT as movement frequency increased, with participants switching progressively from two to one GF modulation per cycle of movement. Specific evaluation of performance under conditions giving rise to comparable LF frequencies (CENT at 1.0 Hz vs. BACK/FRONT at 2.0 Hz) confirmed the effect of frequency ratio on GF-LF coupling. We conclude that the control of GF is more efficient when LF varies at the frequency of movement than when it varies at twice this frequency, especially when movement frequency is high. These results are interpreted in the context of coordination dynamics and forward modeling approach.


Assuntos
Força da Mão , Destreza Motora , Adulto , Análise de Variância , Fenômenos Biomecânicos , Interpretação Estatística de Dados , Feminino , Dedos , Humanos , Cinética , Masculino , Análise e Desempenho de Tarefas , Polegar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA