Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(25): 6647-6653, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38888437

RESUMO

Phonons play a key role in the heat transport process of quantum materials. The understanding of thermal behaviors of phonons will be beneficial for designing modern electronic devices. In this study, we utilize specific heat, Raman spectroscopy, and first-principles calculations combined with the phonon Boltzmann transport equation to explore the thermal transport of gray arsenic. Our specific heat data indicate the presence of the phonon anharmonicity at high temperature. This is further supported by temperature-dependent Raman data showing evident phonon softening and line width broadening. More interestingly, from the analysis of temperature-dependent Raman modes, we found that the four-phonon scattering process is indispensable for interpreting the line width broadening at high temperatures. Moreover, we evaluate the importance of the four-phonon scattering process in the heat transport of gray arsenic using the moment tensor potential method. Our work sheds light on the importance of a higher order phonon scattering process in heat transport of the materials with moderate thermal conductivity.

2.
ACS Appl Mater Interfaces ; 16(4): 4836-4846, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38234104

RESUMO

Transition-metal dichalcogenide WSe2 has attracted increasing interest due to its large thermopower (S), low-cost, and environment-friendly constituents. However, its thermoelectric figure of merit, ZT, of WSe2 is limited due to its large lattice thermal conductivity (κL) and low electrical conductivity. In view of WSe2 and MoS2 having the same crystal structure, here we designed and prepared Nb-doped quarternary mixed crystal (MC) Nb0.05W0.95-xMox(Se1-xSx)2 (0 ≤ x ≤ 0.095). The results indicate that the κL of the MC can reach as low as 0.12 W m K-1 at 850 K, being 93% smaller than that of WSe2. Our analysis reveals that its low κL originates chiefly from intense scattering of both high-frequency phonons from point defects (mainly alloying elements) and mid/low-frequency phonons from MoS2 inclusions residual within MC. In addition, the alloying of WSe2 with MoS2 causes a 5-fold increase in cation vacancies (VW‴'), leading to a large increase in hole concentration and electrical conductivity, which gives rise to a ∼7.5 times increase in power factor (reaching 4.2 µ W cm-1 K-2 at 850 K). As a result, a record high ZTmax = 0.63 is achieved at 850 K for the MC sample with x = 0.076, which is 20 times larger than that of WSe2, demonstrating that MC Nb0.05W0.95-xMox(Se1-xSx)2 is a promising thermoelectric material.

3.
ACS Appl Mater Interfaces ; 16(17): 22016-22024, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647228

RESUMO

Bi2Te3-based thermoelectric (TE) materials are the state-of-the-art compounds for commercial applications near room temperature. Nevertheless, the application of the n-type Bi2Te2.7Se0.3 (BTS) is restricted by the comparatively low figure of merit (ZT) and intrinsic embrittlement. Here, we show that through dispersion of amorphous Si3N4 (a-Si3N4) nanoparticles both 14% increase in power factor (at 300 K) and 48% decrease in lattice thermal conductivity are simultaneously realized. The increased power factor comes from enhanced thermopower and reduced electrical resistivity while the reduced lattice thermal conductivity originates mainly from scattering of middle- and low-frequency phonons at the incorporated a-Si3N4 nanoparticles. As a result, a large ZTmax = 1.19 (at 373 K) and an average ZTave ∼ 1.12 (300-473 K) with better mechanical properties are achieved for the BTS/0.25 wt % Si3N4 sample. Present results demonstrate that the incorporation of a-Si3N4 is a promising way to improve TE performance.

4.
ACS Appl Mater Interfaces ; 15(30): 36457-36467, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37470782

RESUMO

n-Type Bi2Te2.7Se0.3 (BTS) is the state-of-the-art thermoelectric material near room temperature. However, the figure of merit ZT of commercial BTS ingots is still limited and further improvement is imperative for their wide applications. Here, the results show that through dispersion of the Ag2Te nanophase in BTS, one can not only elevate its power factor (PF) by as high as 14% (at 300 K) but also reduce its thermal conductivity κtot to as small as ∼29% (at 300 K). Experimental evidences show that the improved PF comes from both increased electron mobility via inhibited Te vacancies and enhanced thermopower due to energy filtering effect, while the reduction of κtot originates from the drop of both electronic thermal conductivity largely owing to the reduced number of vacancy VTe·· and intensified phonon scattering chiefly from the dispersed Ag2Te nanophase. Consequently, the largest ZTmax = 1.31 (at 350 K) and average ZTave = 1.16 (300-500 K) are achieved for the Bi2Te2.7Se0.3-0.3 wt % Ag2Te composite sample, leading to a projected conversion efficiency η = 8.3% (300-500 K). The present results demonstrate that incorporation of nanophase Ag2Te is an effective approach to boosting the thermoelectric performance of BTS.

5.
ACS Appl Mater Interfaces ; 15(18): 22167-22175, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125742

RESUMO

Transition-metal dichalcogenide WSe2 is a potentially good thermoelectric (TE) material due to its high thermopower (S). However, the low electrical conductivity (σ), power factor (PF), and relatively large lattice thermal conductivity (κL) of pristine WSe2 degenerate its TE performance. Here, we show that through proper substitution of Nb for W in WSe2, its PF can be increased by ∼10 times, reaching 5.44 µW cm-1 K-2 (at 850 K); simultaneously, κL lowers from 1.70 to 0.80 W m-1 K-1. Experiments reveal that the increase of PF originates from both increased hole concentration due to the replacement of W4+ by Nb3+ and elevated thermopower (S) caused by the enhanced density of states effective mass, while the reduced κL comes mainly from phonon scattering at point defects NbW. As a result, a record high figure of merit ZTmax ∼0.42 is achieved at 850 K for the doped sample W0.95Nb0.05Se2, which is ∼13 times larger than that of pristine WSe2, demonstrating that Nb doping at the W site is an effective approach to improve the TE performance of WSe2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA