Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 136(Pt 6): 1956-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23715094

RESUMO

Autism spectrum disorders are associated with atypically excessive early brain growth. Recent studies suggest that later cortical development, specifically cortical thickness, during adolescence and young adulthood is also aberrant. Nevertheless, previous studies of other surface-based metrics (e.g. surface area and gyrification) at high-resolution in autism spectrum disorders are limited. Forty-one males with autism spectrum disorders and 39 typically developing males matched on age (mean ≈ 17; range = 12-24 years) and IQ (mean ≈ 113; range = 85-143) provided high-resolution 3 T anatomical magnetic resonance imaging scans. The FreeSurfer image analysis suite quantified vertex-level surface area and gyrification. There were gyrification increases in the autism spectrum disorders group (relative to typically developing subjects) localized to bilateral posterior cortices (cluster corrected P < 0.01). Furthermore, the association between vocabulary knowledge and gyrification in left inferior parietal cortex (typically developing group: positive correlation; autism spectrum disorders group: no association) differed between groups. Finally, there were no group differences in surface area, and there was no interaction between age and group for either surface area or gyrification (both groups showed decreasing gyrification with increasing age). The present study complements and extends previous work by providing the first evidence of increased gyrification (though no differences in surface area) at high resolution among adolescents and young adults with autism spectrum disorders and by showing a dissociation in the relationship between vocabulary and gyrification in autism spectrum disorders versus typically developing subjects. In contrast with previous findings of age-related cortical thinning in this same autism spectrum disorders sample, here we find that increases in gyrification are maintained across adolescence and young adulthood, implicating developmentally dissociable cortical atypicalities in autism spectrum disorders.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/patologia , Transtornos Globais do Desenvolvimento Infantil/patologia , Adolescente , Córtex Cerebral/fisiologia , Criança , Transtornos Globais do Desenvolvimento Infantil/psicologia , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiologia , Humanos , Masculino , Tamanho do Órgão , Adulto Jovem
2.
Neuroimage ; 60(3): 1890-901, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22326986

RESUMO

To investigate patterns and correlates of cortical thickness in adolescent males with autism spectrum disorders (ASD) versus matched typically developing controls, we applied kernel canonical correlation analysis to whole brain cortical thickness with the explaining variables of diagnosis, age, full-scale IQ, and their interactions. The analysis found that canonical variates (patterns of cortical thickness) correlated with each of these variables. The diagnosis- and age-by-diagnosis-related canonical variates showed thinner cortex for participants with ASD, which is consistent with previous studies using a univariate analysis. In addition, the multivariate statistics found larger affected regions with higher sensitivity than those found using univariate analysis. An IQ-related effect was also found with the multivariate analysis. The effects of IQ and age-by-IQ interaction on cortical thickness differed between the diagnostic groups. For typically developing adolescents, IQ was positively correlated with cortical thickness in orbitofrontal, postcentral and superior temporal regions, and greater thinning with age was seen in dorsal frontal areas in the superior IQ (>120) group. These associations between IQ and cortical thickness were not seen in the ASD group. Differing relationships between IQ and cortical thickness implies independent associations between measures of intelligence and brain structure in ASD versus typically developing controls. We discuss these findings vis-à-vis prior results obtained utilizing univariate methods.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Córtex Cerebral/patologia , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Imageamento por Ressonância Magnética/métodos , Adolescente , Criança , Feminino , Humanos , Testes de Inteligência , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto , Adulto Jovem
3.
Brain ; 133(Pt 12): 3745-54, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926367

RESUMO

Studies of head size and brain volume in autism spectrum disorders have suggested that early cortical overgrowth may be followed by prematurely arrested growth. However, the few investigations quantifying cortical thickness have yielded inconsistent results, probably due to variable ages and/or small sample sizes. We assessed differences in cortical thickness between high-functioning adolescent and young adult males with autism spectrum disorders (n = 41) and matched typically developing males (n = 40). We hypothesized thinner cortex, particularly in frontal, parietal and temporal regions, for individuals with autism spectrum disorders in comparison with typically developing controls. Furthermore, we expected to find an age × diagnosis interaction: with increasing age, more pronounced cortical thinning would be observed in autism spectrum disorders than typically developing participants. T(1)-weighted magnetization prepared rapid gradient echo 3 T magnetic resonance imaging scans were acquired from high-functioning males with autism spectrum disorders and from typically developing males matched group-wise on age (range 12-24 years), intelligence quotient (≥ 85) and handedness. Both gyral-level and vertex-based analyses revealed significantly thinner cortex in the autism spectrum disorders group that was located predominantly in left temporal and parietal regions (i.e. the superior temporal sulcus, inferior temporal, postcentral/superior parietal and supramarginal gyri). These findings remained largely unchanged after controlling for intelligence quotient and after accounting for psychotropic medication usage and comorbid psychopathology. Furthermore, a significant age × diagnosis interaction was found in the left fusiform/inferior temporal cortex: participants with autism spectrum disorders had thinner cortex in this region with increasing age to a greater degree than did typically developing participants. Follow-up within group comparisons revealed significant age-related thinning in the autism spectrum disorders group but not in the typically developing group. Both thinner temporal and parietal cortices during adolescence and young adulthood and discrepantly accelerated age-related cortical thinning in autism spectrum disorders suggest that a second period of abnormal cortical growth (i.e. greater thinning) may be characteristic of these disorders.


Assuntos
Envelhecimento/patologia , Transtorno Autístico/patologia , Lobo Parietal/patologia , Lobo Temporal/patologia , Adolescente , Envelhecimento/psicologia , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/psicologia , Criança , Lobo Frontal/patologia , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/complicações , Transtornos Mentais/psicologia , Testes Neuropsicológicos , Psicotrópicos/efeitos adversos , Psicotrópicos/uso terapêutico , Adulto Jovem
4.
J Neurodev Disord ; 9: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28592997

RESUMO

BACKGROUND: A small percentage of people with autism spectrum disorders (ASD) have alterations in chromosome 15q11.2-q3, the critical region for Prader-Willi syndrome (PWS). Data are limited, however, on the rates and characteristics of ASD in PWS. Previous estimates of ASD in PWS (25 to 41%) are questionable as they are based solely on autism screeners given to parents. Inaccurate diagnoses of ASD in PWS can mislead intervention and future research. METHODS: One hundred forty-six children and youth with PWS aged 4 to 21 years (M = 11) were assessed with the Autism Diagnostic Observation Schedule-2 (ADOS-2). An expert clinical team-made best-estimate ASD diagnoses based on ADOS-2 videotapes, calibrated severity scores, and children's developmental histories and indices of current functioning. Children were also administered the Kaufman Brief Intelligence Test-2, and parents completed the Repetitive Behavior Scale-Revised and Vineland Adaptive Behavior Scales. Scores were compared across children with PWS + ASD versus PWS only. The performance of an ASD screener, the Social Communication Questionnaire (SCQ) and the ADOS-2 were evaluated in relation to best-estimate diagnoses. RESULTS: Best-estimate diagnoses of ASD were made in 18 children, or 12.3% of the sample, and the majority of them had the maternal uniparental disomy (mUPD) PWS genetic subtype. Compared to the PWS-only group, children with PWS + ASD had lower verbal and composite IQ's and adaptive daily living and socialization skills, as well as elevated stereotypies and restricted interests. Regardless of ASD status, compulsivity and insistence on sameness in routines or events were seen in 76-100% of children and were robustly correlated with lower adaptive functioning. The SCQ yielded a 29-49% chance that screen-positive cases will indeed have ASD. The ADOS-2 had higher sensitivity, specificity and predictive values. Communication problems were seen in children who were ADOS-2 positive but deemed not to have ASD by the clinical team. CONCLUSIONS: Autism screeners should not be the sole index of probable ASD in PWS; children need to be directly observed and evaluated. Compulsivity and insistence on sameness are salient in PWS and likely impede adaptive functioning. Most children with PWS only evidenced sub-threshold problems in social interactions that could signal risks for other psychopathologies.

5.
J Am Acad Child Adolesc Psychiatry ; 54(6): 464-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26004661

RESUMO

OBJECTIVE: Prior reports suggest that autism spectrum disorder (ASD) is associated with atypically excessive early brain growth. Recent cross-sectional studies suggest that later cortical development during adolescence/adulthood might also be aberrant, although longitudinal designs are required to evaluate atypical growth trajectories. The present study sought to examine longitudinal changes in cortical thickness and surface area among adolescents and young adults with ASD. METHOD: Two high-resolution anatomic magnetic resonance imaging scans approximately 2 years apart were acquired from 17 adolescents with ASD and 18 typically developing (TD) adolescents, matched on age (range = 14-24 years), IQ, sex ratio, and handedness (70 scans total). The FreeSurfer image analysis suite was used to quantify longitudinal changes in cortical thickness and surface area. RESULTS: Accelerated cortical thinning for the ASD group as compared to the TD group was found in 2 areas in the left hemisphere, the posterior portion of ventral temporal cortex and superior parietal cortex (cluster corrected p < .01). For ventral temporal cortex, cortical thinning was associated with everyday executive function impairments, and thinner cortex at time 2 was correlated with ASD social symptoms. Differences in surface area changes were not detected. CONCLUSION: The present longitudinal study extends prior cross-sectional research by demonstrating increased cortical thinning (in portions of temporal and parietal cortex) but comparable surface area growth rates in participants with ASD compared to TD controls during adolescence and into young adulthood. These findings provide further evidence for atypical cortical development beyond the early years in ASD, marked by increased cortical thinning in late adolescence/young adulthood.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Mapeamento Encefálico , Lobo Parietal/patologia , Lobo Temporal/patologia , Adolescente , Adulto , Estudos Transversais , Função Executiva , Feminino , Lateralidade Funcional , Humanos , Testes de Inteligência , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Tomografia Computadorizada por Raios X , Adulto Jovem
6.
Brain Sci ; 4(4): 594-612, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25422929

RESUMO

Congenital amusia is defined by marked deficits in pitch perception and production. Though historically examined only in otherwise typically developing (TD) populations, amusia has recently been documented in Williams syndrome (WS), a genetic, neurodevelopmental disorder with a unique auditory phenotype including auditory sensitivities and increased emotional responsiveness to music but variable musical skill. The current study used structural T1-weighted magnetic resonance imaging and diffusion tensor imaging to examine neural correlates of amusia in 17 individuals with WS (4 of whom met criteria for amusia). Consistent with findings from TD amusics, amusia in WS was associated with decreased fractional anisotropy (FA) in the right superior longitudinal fasciculus (SLF). The relationship between amusia and FA in the inferior component of the SLF was particularly robust, withstanding corrections for cognitive functioning, auditory sensitivities, or musical training. Though the number of individuals with amusia in the study is small, results add to evidence for the role of fronto-temporal disconnectivity in congenital amusia and suggest that novel populations with developmental differences can provide a window into understanding gene-brain-behavior relationships that underlie musical behaviors.

7.
J Neurodev Disord ; 6(1): 8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24713364

RESUMO

BACKGROUND: Individuals with Down Syndrome (DS) are reported to experience early onset of brain aging. However, it is not well understood how pre-existing neurodevelopmental effects versus neurodegenerative processes might be contributing to the observed pattern of brain atrophy in younger adults with DS. The aims of the current study were to: (1) to confirm previous findings of age-related changes in DS compared to adults with typical development (TD), (2) to test for an effect of these age-related changes in a second neurodevelopmental disorder, Williams syndrome (WS), and (3) to identify a pattern of regional age-related effects that are unique to DS. METHODS: High-resolution T1-weighted MRI of the brains of subjects with DS, WS, and TD controls were segmented, and estimates of regional brain volume were derived using FreeSurfer. A general linear model was employed to test for age-related effects on volume between groups. Secondary analyses in the DS group explored the relationship between brain volume and neuropsychological tests and APOE. RESULTS: Consistent with previous findings, the DS group showed significantly greater age-related effects relative to TD controls in total gray matter and in regions of the orbitofrontal cortex and the parietal cortex. Individuals with DS also showed significantly greater age-related effects on volume of the left and right inferior lateral ventricles (LILV and RILV, respectively). There were no significant differences in age-related effects on volume when comparing the WS and TD groups. In the DS group, cognitive tests scores measuring signs of dementia and APOE ϵ4 carrier status were associated with LILV and RILV volume. CONCLUSIONS: Individuals with DS demonstrated a unique pattern of age-related effects on gray matter and ventricular volume, the latter of which was associated with dementia rating scores in the DS group. Results may indicate that early onset of brain aging in DS is primarily due to DS-specific neurodegenerative processes, as opposed to general atypical neurodevelopment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA