Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 16(8): e1008793, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866189

RESUMO

Transmission to chimpanzees of a precore hepatitis B virus (HBV) mutant implicated in acute liver failure (ALF) in humans did not cause ALF nor the classic form of acute hepatitis B (AHB) seen upon infection with the wild-type HBV strain, but rather a severe AHB with distinct disease features. Here, we investigated the viral and host immunity factors responsible for the unusual severity of AHB associated with the precore HBV mutant in chimpanzees. Archived serial serum and liver specimens from two chimpanzees inoculated with a precore HBV mutant implicated in ALF and two chimpanzees inoculated with wild-type HBV were studied. We used phage-display library and next-generation sequencing (NGS) technologies to characterize the liver antibody response. The results obtained in severe AHB were compared with those in classic AHB and HBV-associated ALF in humans. Severe AHB was characterized by: (i) the highest alanine aminotransferase (ALT) peaks ever seen in HBV transmission studies with a significantly shorter incubation period, compared to classic AHB; (ii) earlier HBsAg clearance and anti-HBs seroconversion with transient or undetectable hepatitis B e antigen (HBeAg); (iii) limited inflammatory reaction relative to hepatocellular damage at the ALT peak with B-cell infiltration, albeit less extensive than in ALF; (iv) detection of intrahepatic germline antibodies against hepatitis B core antigen (HBcAg) by phage-display libraries in the earliest disease phase, as seen in ALF; (v) lack of intrahepatic IgM anti-HBcAg Fab, as seen in classic AHB, but at variance with ALF; and (vi) higher proportion of antibodies in germline configuration detected by NGS in the intrahepatic antibody repertoire compared to classic AHB, but lower than in ALF. This study identifies distinct outcome-specific features associated with severe AHB caused by a precore HBV mutant in chimpanzees, which bear closer resemblance to HBV ALF than to classic AHB. Our data suggest that precore HBV mutants carry an inherently higher pathogenicity that, in addition to specific host factors, may play a critical role in determining the severity of acute HBV disease.


Assuntos
Anticorpos Anti-Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/metabolismo , Imunoglobulina M/metabolismo , Falência Hepática Aguda/metabolismo , Animais , Modelos Animais de Doenças , Hepatite B/patologia , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Humanos , Falência Hepática Aguda/patologia , Pan troglodytes
2.
Biochemistry ; 56(1): 47-60, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28001375

RESUMO

We examined the folding of the ß-barrel membrane protein OmpA from Escherichia coli. Although previous studies identified several intermediate states followed by a concerted translocation mechanism across the bilayer, some aspects of the pathway were still unclear, including the extent of secondary structure formation in the intermediate states and how the mechanism gave rise to multiple exponential phases in the folding kinetics. We addressed these questions by investigating the folding kinetics of the OmpA transmembrane ß-barrel domain over a range of bilayer thicknesses, allowing us to observe different regions of the folding pathway. The fastest folding into the thinnest bilayers provided information about the later stages of the process, and the slowest folding into thicker bilayers revealed early kinetic steps. Folding was monitored using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and circular dichroism spectroscopy, which provide complementary information about tertiary and secondary structure formation. We globally fit the folding data to kinetic schemes and found that the same core pathway was followed under all lipid conditions. We propose a multistep folding mechanism for OmpA that includes unstructured surface-adsorbed states converting through a partially inserted state with substantial ß-sheet structure to the final natively inserted barrel. Kinetic models show that all steps of the main folding pathway are accelerated by membrane defects that occur as a result of thinning the bilayer or incubation of lipids at the phase transition temperature. In addition to suppressing off-pathway states, ß-barrel assembly machinery-catalyzed folding in vivo could accelerate any or all of these main folding steps to ensure efficient outer membrane protein biogenesis in vivo.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares
3.
Proc Natl Acad Sci U S A ; 111(16): 5878-83, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24715731

RESUMO

Outer membrane ß-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded ß-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipídeos/química , Periplasma/metabolismo , Dobramento de Proteína , Biocatálise , Membrana Celular/metabolismo , Cinética , Modelos Biológicos , Fenilalanina/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/metabolismo , Estrutura Secundária de Proteína
4.
Biochemistry ; 54(2): 97-9, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25513891

RESUMO

Outer membrane ß-barrel proteins spontaneously fold into lipid bilayers with rates of folding that are strongly influenced by the physical properties of the membrane. We show that folding is accelerated when the bilayer is at the phase transition temperature, because of the coexistence of lipid phase domains and the high degree of defects present at domain boundaries. These results are consistent with previous observations of faster folding into thin and highly curved membranes, which also contain a higher prevalence of defects. The importance of defects in ß-barrel folding provides insight into the intrinsic folding process and the biological assembly pathway.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Bactérias Gram-Negativas/química , Bicamadas Lipídicas/química , Transição de Fase , Dobramento de Proteína , Estrutura Secundária de Proteína , Temperatura de Transição
5.
mBio ; 11(6)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203756

RESUMO

Historical studies conducted in chimpanzees gave us the opportunity to investigate the basis for the different severities of liver damage and disease outcome associated with infection with wild-type hepatitis B virus (HBV) versus a precore HBV mutant, HBV/hepatitis D virus (HDV) coinfection, and HDV superinfection. Weekly samples from 9 chimpanzees were studied for immune responses by measuring plasma levels of 29 cytokines in parallel with alanine aminotransferase (ALT) levels and viral kinetics. Comparison of classic acute hepatitis B (AHB) with severe or progressive AHB and HBV/HDV coinfection or superinfection identified distinct cytokine profiles. Classic AHB (mean ALT peak, 362 IU/liter) correlated with an early and significant induction of interferon alpha-2 (IFN-α2), IFN-γ, interleukin-12 p70 (IL-12 p70), and IL-17A. In contrast, these cytokines were virtually undetectable in severe AHB (mean ALT peak, 1,335 IU/liter), characterized by significant elevations of IL-10, tumor necrosis factor alpha (TNF-α), and MIP-1ß. In progressive AHB (mean ALT peak, 166 IU/liter), there was a delayed and lower-magnitude induction of cytokines. The ALT peak was also delayed (mean, 23.5 weeks) compared to those of classic (13.5 weeks) and severe AHB (7.5 weeks). HBV/HDV coinfection correlated with significantly lower levels of IFN-α2, IFN-γ, and IL-17A, associated with the presence of multiple proinflammatory cytokines, including IL-1α, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-15. Conversely, HDV superinfection induced the highest ALT peak (1,910 IU/liter) and was associated with a general suppression of cytokines. Our data demonstrate that the most severe liver damage, caused by an HBV precore mutant and HDV, correlated with restricted cytokine expression and lack of Th1 response, raising the question of whether these viruses are directly cytopathic.IMPORTANCE Studies performed in chimpanzees at the National Institutes of Health (NIH) demonstrated a significant difference in ALT levels during acute hepatitis of different viral etiologies, with a hierarchy in the extent of liver damage according to the infecting virus: the highest level was in HDV superinfection, followed by infection with a precore HBV mutant, HBV/HDV coinfection, and, lastly, wild-type HBV infection. Our study demonstrates that both the virus and host are important in disease pathogenesis and offers new insights into their roles. We found that distinct cytokine profiles were associated with disease severity and clinical outcome. In particular, resolution of classic acute hepatitis B (AHB) correlated with a predominant Th1 response, whereas HBV/HDV coinfection showed a predominant proinflammatory response. Severe AHB and HDV superinfection showed a restricted cytokine profile and no evidence of Th1 response. The lack of cytokines associated with adaptive T-cell responses toward the precore HBV mutant and HDV superinfection argues in favor of a direct cytopathic effect of these viruses.


Assuntos
Citocinas/metabolismo , Vírus da Hepatite B/imunologia , Hepatite B/virologia , Hepatite D/virologia , Vírus Delta da Hepatite/imunologia , Doença Aguda , Animais , Coinfecção , Modelos Animais de Doenças , Humanos , Estudos Longitudinais , Pan troglodytes , Índice de Gravidade de Doença
6.
Phys Chem Chem Phys ; 11(41): 9315-25, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19830312

RESUMO

Mixtures of oppositely charged surfactants, commonly called catanionic mixtures, are one of the most interesting and promising areas of colloidal chemistry. In this paper we review our previous work and report new results on electrostatic adsorption of organic solutes and DNA to the exterior surfaces of catanionic, unilamellar vesicles which form spontaneously in mixtures of sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium tosylate (CTAT). Our group, along with others, has shown that organic ions and polyelectrolytes will bind to the exterior surface of oppositely charged catanionic vesicles through interactions with unpaired ionic surfactants present in the vesicle bilayer. The electrostatic sequestration of organic ions with catanionic vesicles is extremely efficient with excellent long-term stability and can be used to perform separations on mixtures of charged organic solutes. Using regular solution theory extended to vesicle-forming surfactant mixtures, we can understand how the composition of the bilayer changes with surfactant dilution, and we study this effect using fluorescence correlation spectroscopy (FCS). We employ FCS to make sensitive measurements of bilayer adsorption and compare the adsorption of a small molecular probe with that of a single-stranded, dye-labeled DNA molecule. From these FCS studies, adsorption isotherms can be obtained that report on the relative binding strengths of the two systems. The results show that DNA binds much more strongly to the exterior surface of positively charged catanionic vesicles, and can even stabilize vesicles at very low surfactant concentrations near the critical aggregation concentration (cac).


Assuntos
Eletrólitos/química , Eletrólitos/isolamento & purificação , Eletricidade Estática , Tensoativos/química , Lipossomas Unilamelares/química , Adsorção , Benzenossulfonatos/química , Cátions , Compostos de Cetrimônio/química , Corantes/química , DNA/química , DNA/metabolismo , Cinética , Espectrometria de Fluorescência , Tensoativos/metabolismo , Termodinâmica , Lipossomas Unilamelares/metabolismo
7.
PLoS One ; 10(7): e0132301, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26196893

RESUMO

Unfolded outer membrane beta-barrel proteins have been shown to self-associate in the absence of lipid bilayers. We previously investigated the formation of high molecular weight species by OmpA, with both the transmembrane domain alone and the full-length protein, and discovered that the oligomeric form contains non-native ß-sheet structure. We have further probed the conformation of self-associated OmpA by monitoring binding to Thioflavin T, a dye that is known to bind the cross-ß a structure inherent in amyloid fibrils, and by observing the species by electron microscopy. The significant increase in fluorescence indicative of Thioflavin T binding and the appearance of fibrillar species by electron microscopy verify that the protein forms amyloid-like fibril structures upon oligomerization. These results are also consistent with our previous kinetic analysis of OmpA self-association that revealed a nucleated growth polymerization mechanism, which is frequently observed in amyloid formation. The discovery of OmpA's ability to form amyloid-like fibrils provides a new model protein with which to study fibrillization, and implicates periplasmic chaperone proteins as capable of inhibiting fibril formation.


Assuntos
Amiloide/química , Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/química , Desdobramento de Proteína , Amiloide/ultraestrutura , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Escherichia coli/ultraestrutura , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína , Água/química
8.
Biophys Chem ; 159(1): 194-204, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21782315

RESUMO

OmpA is one of only a few transmembrane proteins whose folding and stability have been investigated in detail. However, only half of the OmpA mass encodes its transmembrane ß-barrel; the remaining sequence is a soluble domain that is localized to the periplasmic side of the outer membrane. To understand how the OmpA periplasmic domain contributes to the stability and folding of the full-length OmpA protein, we cloned, expressed, purified and studied the OmpA periplasmic domain independently of the OmpA transmembrane ß-barrel region. Our experiments showed that the OmpA periplasmic domain exists as an independent folding unit with a free energy of folding equal to -6.2 (±0.1) kcal mol(-1) at 25°C. Using circular dichroism, we determined that the OmpA periplasmic domain adopts a mixed alpha/beta secondary structure, a conformation that has previously been used to describe the partially folded non-native state of the full-length OmpA. We further discovered that the OmpA periplasmic domain reduces the self-association propensity of the unfolded barrel domain, but only when covalently attached (in cis). In vitro folding experiments showed that self-association competes with ß-barrel folding when allowed to occur before the addition of membranes, and the periplasmic domain enhances the folding efficiency of the full-length protein by reducing its self-association. These results identify a novel chaperone function for the periplasmic domain of OmpA that may be relevant for folding in vivo. We have also extensively investigated the properties of the self-association reaction of unfolded OmpA and found that the transmembrane region must form a critical nucleus comprised of three molecules before undergoing further oligomerization to form large molecular weight species. Finally, we studied the conformation of the unfolded OmpA monomer and found that the folding-competent form of the transmembrane region adopts an expanded conformation, which is in contrast to previous studies that have suggested a collapsed unfolded state.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/química , Chaperonas Moleculares/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/metabolismo , Periplasma/química , Periplasma/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
9.
Langmuir ; 23(17): 8965-71, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17658858

RESUMO

We demonstrate the unique ability of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, to capture ionic solutes with remarkable efficiency. In an initial study (Wang, X.; Danoff, E. J.; Sinkov, N. A.; Lee, J.-H.; Raghavan, S. R.; English, D. S. Langmuir 2006, 22, 6461) with vesicles formed from cetyl trimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS), we showed that CTAT-rich (cationic) vesicles could capture the anionic solute carboxyfluorescein with high efficiency (22%) and that the solute was retained by the vesicles for very long times (t1/2 = 84 days). Here we expand on these findings by investigating the interactions of both anionic and cationic solutes, including the chemotherapeutic agent doxorubicin, with both CTAT-rich and SDBS-rich vesicles. The ability of these vesicles to capture and hold dyes is extremely efficient (>20%) when the excess charge of the vesicle bilayer is opposite that of the solute (i.e., for anionic solutes in CTAT-rich vesicles and for cationic solutes in SDBS-rich vesicles). This charge-dependent effect is strong enough to enable the use of vesicles to selectively capture and separate an oppositely charged solute from a mixture of solutes. Our results suggest that catanionic surfactant vesicles could be useful for a variety of separation and drug delivery applications because of their unique properties and long-term stability.


Assuntos
Compostos Orgânicos/química , Tensoativos/química , Cor , Estrutura Molecular , Fatores de Tempo
10.
Langmuir ; 22(15): 6461-4, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16830982

RESUMO

Vesicles formed from the cationic surfactant, cetyltrimethylammonium tosylate (CTAT) and the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), were used to sequester the anionic dye carboxyfluorescein. Carboxyfluorescein was efficiently sequestered in CTAT-rich vesicles via two mechanisms: encapsulation in the inner water pool and electrostatic adsorption to the charged bilayer. The apparent encapsulation efficiency (22%) includes both encapsulated and adsorbed fractions. Entrapment of carboxyfluorescein by SDBS-rich vesicles was not observed. Results show the permeability of the catanionic membrane is an order of magnitude lower than that of phosphatidylcholine vesicles and the loading capacity is more than 10 times greater.


Assuntos
Compostos de Cetrimônio/química , Fluoresceínas/química , Tensoativos/química , Benzenossulfonatos/química , Cátions/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA