Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474972

RESUMO

Salivary turbidity is a promising indicator for evaluating oral hygiene. This study proposed a wearable mouthguard-type sensor for continuous and unconstrained measurement of salivary turbidity. The sensor evaluated turbidity by measuring the light transmittance of saliva with an LED and a phototransistor sealed inside a double-layered mouthguard. The sensor was also embedded with a Bluetooth wireless module, enabling the wireless measurement of turbidity. The mouthguard materials (polyethylene terephthalate-glycol and ethylene-vinyl acetate) and the wavelength of the LED (405 nm) were experimentally determined to achieve high sensitivity in salivary turbidity measurement. The turbidity quantification characteristic of the proposed sensor was evaluated using a turbidity standard solution, and the sensor was capable of turbidity quantification over a wide dynamic range of 1-4000 FTU (formazine turbidity unit), including reported salivary turbidity (400-800 FTU). In vitro turbidity measurement using a saliva sample showed 553 FTU, which is equivalent to the same sample measured with a spectrophotometer (576 FTU). Moreover, in vivo experiments also showed results equivalent to that measured with a spectrophotometer, and wireless measurement of salivary turbidity was realized using the mouthguard-type sensor. Based on these results, the proposed mouthguard-type sensor has promising potential for the unconstrained continuous evaluation of oral hygiene.


Assuntos
Protetores Bucais , Dispositivos Eletrônicos Vestíveis , Higiene Bucal , Saliva
2.
Sensors (Basel) ; 22(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632336

RESUMO

To stabilize the detection signal of palladium-based hydrogen sensors on paper substrates, a graphite intermediate layer was painted on the surface of paper. The graphite-on-paper (GOP) substrate offers advantages such as good thermo-electrical conductivity, low cost, and uncomplicated preparation technology. Quasi-1-dimensional palladium (Pd) thin films with 8 nm and 60 nm thicknesses were deposited on the GOP substrates using the vacuum evaporation technique. Thanks to the unique properties of the GOP substrate, a continuous Pd microfiber network structure appeared after deposition of the ultra-thin Pd film. Additionally, the sensing performance of the palladium-based hydrogen sensor was not affected, whether using GOP or paper substrate at 25 °C. Surprisingly, heating-induced loss of sensitivity was restrained due to the increased electrical conductivity of the GOP substrate at 50 °C.

3.
Small ; 17(49): e2101775, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309181

RESUMO

Silicon (Si), as the second most abundant element on Earth, has been a central platform of modern electronics owing to its low mass density and unique semiconductor properties. From an energy perspective, all-in-one integration of power supply systems onto Si-based functional devices is highly desirable, which inspires significant study on Si-based energy storage. Compared to the well-known Si-anode Li-ion batteries, Si-based supercapacitors possess high power density, long life, and simple working mechanisms, which enables their ease of integration onto a wide range of devices and applications. Besides Si, silicon carbide (SiC), as a physicochemically stable wide-bandgap semiconductor, also attracts research attention as an energy storage material in harsh environments. In this review, a detailed overview of latest advances in materials design, synthesis methods, and performances of Si-based and SiC-based supercapacitors will be provided. Some successful integrated devices, future perspectives, and potential research directions are also highlighted and discussed.

4.
Small ; 16(14): e1905707, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101372

RESUMO

Stretchable and wearable sensor technology has attracted significant interests and created high technological impact on portable healthcare and smart human-machine interfaces. Wearable electromechanical systems are an important part of this technology that has recently witnessed tremendous progress toward high-performance devices for commercialization. Over the past few years, great attention has been paid to simultaneously enhance the sensitivity and stretchability of the electromechanical sensors toward high sensitivity, ultra-stretchability, low power consumption or self-power functionalities, miniaturisation as well as simplicity in design and fabrication. This work presents state-of-the-art advanced materials and rational designs of electromechanical sensors for wearable applications. Advances in various sensing concepts and structural designs for intrinsic stretchable conductive materials as well as advanced rational platforms are discussed. In addition, the practical applications and challenges in the development of stretchable electromechanical sensors are briefly mentioned and highlighted.


Assuntos
Técnicas Biossensoriais , Manufaturas , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Condutividade Elétrica , Humanos , Manufaturas/normas , Dispositivos Eletrônicos Vestíveis/tendências
5.
Soft Matter ; 14(20): 4160-4168, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29682664

RESUMO

The coalescence process of liquid marbles is vital to their promising roles as reactors or mixers in digital microfluidics. However, the underlying mechanisms and critical conditions of liquid marble coalescence are not well understood. This paper studies the coalescence process of two equally-sized liquid marbles via vertical collision aided by dielectrophoretic handling. A liquid marble was picked up using the dielectrophoretic force and then dropped vertically onto another liquid marble resting on a hydrophobic powder bed. The whole collision process was recorded by a high-speed camera and the recorded images were then analysed to derive the generalised conditions of liquid marble coalescence. By varying the marble volume, impact velocity and offset ratio in the experiments, we concluded that liquid marble coalescence may occur through the coating pore opening mechanism. We quantitatively measured the radius change versus time of the liquid neck formed between two coalescing marbles and estimated the maximum deformation of impacting marbles before rupture in rebound cases. We also qualitatively described the redistribution of coating particles at the impact area during coalescence as well as the consequent ejection of particles. Finally, we summarised the critical conditions for liquid marble coalescence, providing a frame for future applications involving liquid marbles as micromixers and microreactors.

6.
Sensors (Basel) ; 18(10)2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275369

RESUMO

A flexible pressure sensor with a rudimentary, ultra-low cost, and solvent-free fabrication process is presented in this paper. The sensor has a graphite-on-paper stacked paper structure, which deforms and restores its shape when pressure is applied and released, showing an exceptionally fast response and relaxation time of ≈0.4 ms with a sensitivity of -5%/Pa. Repeatability of the sensor over 1000 cycles indicates an excellent long-term stability. The sensor demonstrated fast and reliable human touch interface, and successfully integrated into a robot gripper to detect grasping forces, showing high promise for use in robotics, human interface, and touch devices.

7.
Sensors (Basel) ; 18(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695036

RESUMO

A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

8.
Sensors (Basel) ; 17(9)2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28885595

RESUMO

Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

9.
Sensors (Basel) ; 16(8)2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-27509496

RESUMO

This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement.


Assuntos
Técnicas Biossensoriais/instrumentação , Força de Mordida , Análise do Estresse Dentário/instrumentação , Desenho de Equipamento , Humanos , Fenômenos Mecânicos
10.
Soft Matter ; 11(23): 4576-83, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25882511

RESUMO

A rigid spherical particle floating on a liquid is a known problem with well-defined solutions. Under the combined effect of gravity and surface tension, the rigid particle deforms the liquid surface. However, in the case of a floating soft particle such as a liquid marble, not only the liquid surface but also the particle itself deforms. In this paper, we investigate the deformation of a floating liquid marble and characterise its height as well as aspect ratio. The experimental results show that theoretical models for a rigid spherical particle suit well for small liquid marbles. Larger marbles require an oblate liquid spheroid model. We will discuss the limitations of the two models and characterise the deformation of these marbles.


Assuntos
Modelos Teóricos
11.
ACS Appl Mater Interfaces ; 16(1): 1638-1649, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38110238

RESUMO

Portable and wearable electronics for biomechanical data collection have become a growing part of everyday life. As smart technology improves and integrates into our lives, some devices remain ineffective, expensive, or difficult to access. We propose a washable iron-on textile pressure sensor for biometric data acquisition. Biometric data, such as human gait, are a powerful tool for the monitoring and diagnosis of ambulance and physical activity. To demonstrate this, our washable iron-on device is embedded into a sock and compared to gold standard force plate data. Biomechanical testing showed that our embedded sensor displayed a high aptitude for gait event detection, successfully identifying over 96% of heel strike and toe-off gait events. Our device demonstrates excellent attributes for further investigations into low-cost, washable, and highly versatile iron-on textiles for specialized biometric analysis.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Marcha , Têxteis , Fenômenos Mecânicos , Exercício Físico
12.
Artigo em Inglês | MEDLINE | ID: mdl-38995693

RESUMO

The pursuit of increased efficiency of photoelectric energy conversion through optimized semiconductor structures remains highly competitive, with current results yet to align with broad expectations. In this study, we discover a significant enhancement in photocurrent performance of a p-3C-SiC nanothin film on p-Si/n-Si double junction (DJ) heterostructure that integrates p-3C-SiC/p-Si heterojunction and p-Si/n-Si homojunction. The vertical photocurrent (VPC) and vertical photoresponsivity exhibit a substantial enhancement in the DJ heterostructure, surpassing by a maximum of 43-fold compared to the p-3C-SiC/n-Si single junction (SJ) counterpart. The p-3C-SiC layer and n-Si substrate of the two heterostructures have similar material and geometrical properties. More importantly, the fabrication costs for the DJ and SJ heterostructure devices are comparable. Our results demonstrate a significant potential for using DJ devices in energy harvesters, micro/nano electromechanical systems, and sensing applications. This research may also lead to the creation of advanced optoelectronic devices using DJ structures, where employing various semiconductor materials to achieve exceptional performance through the application of the concept and theoretical model described in this work.

13.
ACS Appl Mater Interfaces ; 15(32): 38930-38937, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531165

RESUMO

The development of fifth-generation (5G) communications and the Internet of Things (IoT) has created a need for high-performance sensing networks and sensors. Improving the sensitivity and reducing the energy consumption of these sensors can improve the performance of the sensing network and conserve energy. This paper reports a large enhancement of the photovoltaic effect in a 3C-SiC/Si heterostructure and the tunability of the photovoltage under the impact of a temperature gradient, which has the potential to increase the sensitivity and reduce the energy consumption of microsensors. To start with, cubic silicon carbide (3C-SiC) was grown on a silicon wafer, and a micro-3C-SiC/Si heterostructure device was then fabricated using standard photolithography. The result revealed that the sensor could either capture light energy, transform it into electrical energy for self-power purposes, or detect light with intensities of 1.6 and 4 mW/cm2. Under the impact of the temperature gradient induced by conduction heat transfer from a heater, the measured photovoltage was improved. This thermo-phototronic coupling enhanced the photovoltage up to 51% at a temperature gradient of 8.73 K and light intensity of 4 mW/cm2. Additionally, the enhancement can be tuned by controlling the direction of the temperature gradient and the temperature difference. These findings indicate the promise of the temperature gradient in SiC/Si heterostructures for developing high-performance temperature sensors and self-powered photodetectors.

14.
ACS Appl Mater Interfaces ; 15(23): 28781-28789, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37249208

RESUMO

This paper presents a novel self-powered mechanical sensing based on the vertical piezo-optoelectronic coupling in a 3C-SiC/Si heterojunction. The vertical piezo-optoelectronic coupling refers to the change of photogenerated voltage across the 3C-SiC/Si heterojunction upon application of mechanical stress or strain. The effect is elucidated under different photoexcitation conditions and under varying tensile and compressive strains. Experimental results show that the relationship between the vertical photovoltage and applied strain is highly linear, increasing under the tensile strain while decreasing under the compressive strain. The highest sensitivities to tensile and compressive strains are 0.146 and 0.058 µV/ppm/µW, respectively, which are about 220 and 360 times larger than those of the lateral piezo-optoelectronic coupling reported in literatures. These extremely large changes in vertical photovoltages are explained by the alteration in effective mass, energy band shift, and repopulation of photogenerated holes in out-of-plane, in-plane longitudinal, and in-plane transverse directions when strains are exerted on the heterojunction. The significant enhancement of strain sensitivity will pave the way for development of ultrasensitive and self-powered mechanical sensors based on the proposed vertical piezo-optoelectronic coupling.

15.
ACS Appl Mater Interfaces ; 15(50): 58746-58760, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051258

RESUMO

Point-of-care monitoring of physiological signals such as electrocardiogram, electromyogram, and electroencephalogram is essential for prompt disease diagnosis and quick treatment, which can be realized through advanced skin-worn electronics. However, it is still challenging to design an intimate and nonrestrictive skin-contact device for physiological measurements with high fidelity and artifact tolerance. This research presents a facile method using a "tacky" surface to produce a tight interface between the ACNT skin-like electronic and the skin. The method provides the skin-worn electronic with a stretchability of up to 70% strain, greater than that of most common epidermal electrodes. Low-density ACNT bundles facilitate the infiltration of adhesive and improve the conformal contact between the ACNT sheet and the skin, while dense ACNT bundles lessen this effect. The stretchability and conformal contact allow the ACNT sheet-based electronics to create a tight interface with the skin, which enables the high-fidelity measurement of physiological signals (the Pearson's coefficient of 0.98) and tolerance for motion artifacts. In addition, our method allows the use of degradable substrates to enable reusability and degradability of the electronics based on ACNT sheets, integrating "green" properties into on-skin electronics.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Pele , Eletrônica , Epiderme
16.
ACS Appl Mater Interfaces ; 15(25): 29777-29788, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318848

RESUMO

Electrohydrodynamic atomization (EHDA) provides unparalleled control over the size and production rate of particles from solution. However, conventional methods produce highly charged particles that are not appropriate for inhalation drug delivery. We present a self-propelled EHDA system to address this challenge, a promising one-step platform for generating and delivering charge-reduced particles. Our approach uses a sharp electrode to produce ion wind, which reduces the cumulative charge in the particles and transports them to a target in front of the nozzle. We effectively controlled the morphologies of polymer products created from poly(vinylidene fluoride) (PVDF) at various concentrations. Our technique has also been proven safe for bioapplications, as evidenced by the delivery of PVDF particles onto breast cancer cells. The combination of simultaneous particle production and charge reduction, along with its direct delivery capability, makes the self-propelled EHDA a versatile technique for drug delivery applications.


Assuntos
Sistemas de Liberação de Medicamentos , Polivinil , Tamanho da Partícula
17.
ACS Appl Mater Interfaces ; 14(19): 22593-22600, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35523205

RESUMO

Utilizing harvesting energy to power sensors has been becoming more critical in the current age of the Internet of Things. In this paper, we propose a novel technology using a monolithic 3C-SiC/Si heterostructure to harvest photon energy to power itself and simultaneously sense the surrounding temperature. The 3C-SiC/Si heterostructure converts photon energy into electrical energy, which is manifested as a lateral photovoltage across the top material layer of the heterostructure. Simultaneously, the lateral photovoltage varies with the surrounding temperature, and this photovoltage variation with temperature is used to monitor the temperature. We characterized the thermoresistive properties of the 3C-SiC/Si heterostructure, evaluated its energy conversion, and investigated its performance as a light-harvesting self-powered temperature sensor. The resistance of the heterostructure gradually drops with increasing temperature with a temperature coefficient of resistance (TCR) ranging from more than -3500 to approximately -8200 ppm/K. The generated lateral photovoltage is as high as 58.8 mV under 12 700 lx light illumination at 25 °C. The sensitivity of the sensor in the self-power mode is as high as 360 µV·K-1 and 330 µV·K-1 under illumination of 12 700 lx and 7400 lx lights, respectively. The sensor harvests photon energy to power itself and measure temperatures as high as 300 °C, which is impressive for semiconductor-based sensor. The proposed technology opens new avenues for energy harvesting self-powered temperature sensors.

18.
Micromachines (Basel) ; 13(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422416

RESUMO

Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35656814

RESUMO

A highly versatile, low-cost, and robust tactile sensor capable of acquiring load measurements under static and dynamic modes employing a poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] micronanofiber element is presented. The sensor is comprised of three essential layers, a fibrous core P(VDF-TrFE) layer and two Ni/Cu conductive fabric electrode layers, with a total thickness of less than 300 µm. Using an in situ electrospinning process, the core fibers are deposited directly to a soft poly(dimethylsiloxane) (PDMS) fingertip. The core layer conforms to the surface and requires no additional processing, exhibiting the capability of the in situ electrospinning fabrication method to alleviate poor surface contacts and resolve issues associated with adhesion. The fabricated tactile sensor displayed a reliable and consistent measurement performance of static and instantaneous dynamic loads over a total of 30 000 test cycles. The capabilities and implications of the presented tactile sensor design for multimodal sensing in robot tactile sensing applications is further discussed and elucidated.

20.
Opt Express ; 19(9): 8821-9, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21643135

RESUMO

This paper reports the theoretical and experimental investigations on the strain sensing effect of a two dimensions (2D) photonic crystal (PhC) nanocavity resonator. By using the finite element method (FEM) and finite difference time domain (FDTD) simulations, the strain sensitivity of a high quality factor PhC nanocavity was calculated. Linear relationships between the applied strain and the shift in the resonant wavelength of the cavity were obtained. A single-defect silicon (Si) PhC cavity was fabricated, and measurements of the strain sensitivity were performed. Good agreement between the experimental and simulation results was observed.


Assuntos
Nanotecnologia/instrumentação , Refratometria/instrumentação , Transdutores , Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA