Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 207(12): 1576-1590, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219322

RESUMO

Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Antígenos CD/metabolismo , Antioxidantes , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI/efeitos adversos , Proteínas Ligadas por GPI/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Nicotiana
2.
Am J Respir Crit Care Med ; 207(3): 283-299, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047984

RESUMO

Rationale: Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. Objectives: We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. Methods: We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition in vitro (AEC2 lines, primary murine/human AEC2s), ex vivo (human IPF-derived precision-cut lung slices), and in vivo (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). Measurements and Main Results: We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. In vivo pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Conclusions: Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.


Assuntos
Fibrose Pulmonar Idiopática , Surfactantes Pulmonares , Humanos , Camundongos , Animais , Tensoativos , Pulmão , Células Epiteliais Alveolares , Bleomicina , Receptor Notch1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA