Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chemistry ; 30(28): e202304223, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38477396

RESUMO

Superalkalis are unusual species having ionization energies lower than that of the alkali metals. These species with various applications are of great importance in chemistry due to their low ionization energies and strong reducing property. A typical superalkali contains a central electronegative core decorated with excess metal ligands. In the quest for novel superalkalis, we have designed the superalkalis HLi2, HLiNa and HNa2 using hydrogen as central electronegative atom for the first time employing high level ab initio (CCSD(T), MP2) and density functional theory (ωB97X-D) methods. The superalkalis exhibit very low ionization energies, even lower than that of cesium. Stability of these species is verified from binding energy and dissociation energy values. The superalkalis are capable of reducing SO2, NO, CO2, CO and N2 molecules by forming stable ionic complexes and therefore can be used as catalysts for the reduction or activation of systems possessing very low electron affinities. The superalkalis form stable supersalts with tailored properties when interact with a superhalogen. They also show remarkably high non-linear optical responses, hence could have industrial applications. It is hoped that this work will enrich the superalkali family and spur further theoretical and experimental research in this direction.

2.
Phys Chem Chem Phys ; 25(6): 4710-4723, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36661858

RESUMO

In the present study, the electronic structures of a series of binuclear sandwich complexes based on the cyclooctatetraene ligand M12(η8-C8H8)2M22 (M1 = Na, K and M2 = Ca, Mg) are studied theoretically. Each cyclooctatetraene ligand binds with the metal in the η8 binding mode. The M2-M2 bond length agrees well with the reported bimetallic covalent Ca2 and Mg2 bond lengths. The Wiberg bond index (WBI) also indicates the presence of covalent M2-M2 bonds, which gives additional stability to the complex. A non-nuclear attractor (NNA) is found in-between the M2-M2 bond and the negative Laplacian of the electron density is found at the NNA. Noncovalent interaction (NCI) plot shows that electron density is localized at the M2-M2 bond. Based on the performed analysis, we have concluded that the designed sandwich complexes are electrides. We herein report, for the first time, the electride sandwich complexes of the cyclooctatetraene ligand. Due to the presence of a diffuse electron system, the electride complexes exhibit higher values of the static second hyperpolarizability within the range of 2.6 × 105 to 1.4 × 106 a.u. Among the studied complexes, M12(η8-C8H8)2Ca2 exhibit a higher value of static second hyperpolarizability.

3.
Phys Chem Chem Phys ; 24(6): 4022-4041, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35103266

RESUMO

Mechanistic investigations into the functionalization of three fullerene cages, viz. C60, C70, and C36 through dehydrogenation of ammonia-borane (AB) have been conducted using Density Functional Theory (DFT). In this process of functionalization, different ring fusions, namely (6-6), (6-5) positions for C60 and C70, and an additional (5-5) for C36 fullerene have been investigated. The optimized geometries of all the complexes and transition states have been characterized using the M06-2X functional in conjunction with the 6-31G(d) basis set. The effect of Li+-encapsulation on the energetics and activation barriers of H2 attachment has also been examined. Although the process of functionalization of neutral fullerenes proceeds extensively through concerted pathways, a step-wise route has been observed for the encapsulated systems. NPA charge analysis and Wiberg bond index (WBI) have been used in order to detect the change in the nature of participating hydrogen atoms and validate the variation in the bond order of the C-C connectivity respectively upon hydrogenation. GCRD parameters have also been calculated to explicate the electronic properties of the hydrogenated products. The (6-6) hydrogenation is observed to be favoured thermodynamically and kinetically for both neutral and Li+-encapsulated C60 and C70, while (5-5) is found to be the most preferred site for C36 systems. Our theoretical exploration suggests that the covalent functionalization of the fullerene cages can be done successfully viaAB resulting in the stabilization of these systems. In short, the present work will provide a general idea about the detailed mechanism related to the functionalization of fullerene cages, which will further motivate researchers in fullerene chemistry.

4.
J Phys Chem A ; 122(42): 8377-8389, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30284830

RESUMO

A gas-phase mechanistic investigation of the unimolecular, water/ammonia-assisted decomposition reactions of the α-hydroxy hydroperoxides (HPs) and hydroperoxide arylamines (a-HPs) produced during the styrene ozonolysis has been carried out theoretically in the present article. The instrumental role of stereochemistry in controlling the outcome of individual reactions has been discussed. Thermodynamic parameters (Δ G298K, Δ H298K, Δ E0K) associated with individual reactions have also been computed. The rate constants estimated for individual reactions using conventional transition state theory (TST) combined with statistical mechanics provide a comprehensive understanding of the reaction mechanism and also elucidate the atmospheric fate of Criegee intermediates. Considering the feasibility of reactions from thermodynamic and kinetic points of view, while aldehyde (PhCHO) formation pathway originating from bimolecular decomposition of HP is found to be kinetically favored, benzoic acid formation pathway remains favored thermodynamically. A similar consideration for the bimolecular reactions of a-HP reveals the phenylmethanimine formation pathway to be kinetically favored, while the benzamide formation pathway is favored thermodynamically. Our findings appear to be in excellent agreement with the experimental observations.

5.
Phys Chem Chem Phys ; 17(31): 20231-49, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26186058

RESUMO

The adsorption of a model nerve agent, O,S-dimethyl methylphosphonothiolate (DMPT), on the hydroxylated and unhydroxylated nano-crystalline magnesium oxide surface followed by the nucleophilic attack of ammonia (NH3) is investigated at the M06-2X/6-311++G(d,p) level of theory using the representative cluster models. The geometries of DMPT and NH3 are fully optimized, while the geometry of the oxide fragment is kept frozen. The main insight of this study is the incorporation of the Eley-Rideal mechanism for the first time in the detoxification process, where one of the reactant molecules (DMPT) is adsorbed and the other one (NH3) reacts with it directly impinging from the gas phase. There are two possible pathways of nucleophilic detoxification, either concerted or stepwise. The nature of the first transition state of nucleophilic attack in both pathways is the vital step for degradation. Our calculated results predict that the reaction of DMPT with NH3 gives rise to both P-S and P-O bond cleavage completely. Also, the P-S cleavage is found to be the favorable one over P-O bond breaking. The exploration of the overall reaction mechanism has established the catalytic activity of nano-crystalline MgO in nucleophilic DMPT degradation, as in all cases the activation barriers have reduced compared to the previously reported aminolysis of DMPT in the gas phase. Interestingly, the hydroxylated model has better catalytic performance than the unhydroxylated one.

6.
J Phys Chem A ; 119(20): 4939-52, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25915481

RESUMO

A detailed mechanistic investigation of Si-Me formation over the silicon (100)-2 × 1 surface using the Si9H12 cluster model has been performed using various reagents, based on two basic mechanisms: dissociation and substitution. The reagents CH4, CH3Cl for dissociation and CH3Li, CH3MgBr for substitution mechanism are used to explore the methylation process on the silicon surface at the M062X/6-311+G(2d, p) level of theory. The associated potential energy surfaces explored here are aimed to unveil the most favored pathway of methylation with appropriate reagents. Dissociation of methane forms a monomethylated product (D1) through an energetically unfavorable pathway. All the adsorption modes of CH3Cl over the silicon surface are also detected and analyzed. Methyl chloride dissociates to form another monomethylated product D2 and its derivative D3 in the entrance channel, while, in the next step, bridged compounds I1 (Cl-bridged) and I2 (H-bridged) are produced from them, respectively. The C-Cl dissociation leads to the formation of D2 having a lower activation barrier. With a comparably high activation barrier in the C-H dissociation, producing D3, very interestingly carbene intermediate has been detected in the reaction pathway. Detection of energetically unfavored conversions from D2 to I1 and D3 to I2 ensured that the methylation process will not be hampered through these interconversions. For substitution, HCl- and Cl2-passivated Si surfaces are taken, where chlorine is to be substituted by the methyl group of both of the methylating agents. With both substituents, HCl-passivated Si9H12 gives D1. The substitution process on Cl2-passivated Si9H12 leads to the formation of D2 in the first step and dimethylated product (S1) in the final step. In all the above substitution processes, methyl lithium proved to be the better substituent for the formations of D1, D2, and S1 on HCl- or Cl2-passivated surfaces. The present work not only demonstrated methyl lithium as one of the best methylating agents but also revealed the interrelation among the dissociative adsorption modes of CH3Cl, reported earlier, in a single potential energy surface with a remarkable detection of carbene intermediate formed in the pathway of C-H dissociation.

7.
J Chem Phys ; 143(19): 194305, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26590535

RESUMO

A gas phase mechanistic investigation has been carried out theoretically to explore the hydrolysis pathway of ammonia borane (NH3BH3) and metal amidoboranes (MNH2BH3, M = Li,Na). The Solvation Model based on Density (SMD) has been employed to show the effect of bulk water on the reaction mechanism. Gibbs free energy of solvation has also been computed to evaluate the stabilization of the participating systems in water medium which directly affects the barrier heights in the potential energy surface of hydrolysis reaction. To validate the experimentally observed kinetics studies, we have carried out transition state theory calculations on these hydrolysis reactions. Our result shows that the hydrolysis of both the metal amidoboranes exhibits greatly improved kinetics over the neat NH3BH3 hydrolysis which corroborates well with the experimental observation. Between the two amidoboranes, hydrolysis of LiNH2BH3 is found to be kinetically favored over that of NaNH2BH3, making it a better candidate for releasing molecular hydrogen.

8.
Dalton Trans ; 53(26): 11120-11132, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38887942

RESUMO

In this study, three different solvent systems have been employed to investigate the effect of reaction parameters on the synthesis of four alkaline earth metal-based MOFs namely [Ca(0.5 1,4-phenyl diacetic acid)2(H2O)DMF]∞ (Ca-MOF-1), [Ca(1,4-naphthalene dicarboxylate)DMF]∞ (Ca-MOF-2), [Ca2(0.5 1,2,4,5-benzene tetracarboxylate)2(H2O)3DMF]∞ (Ca-MOF-3) and [Ca2(2,6-naphthalene dicarboxylate)2(H2O)6]∞ (Ca-MOF-4). The crystal structures of these four MOFs have been resolved through single crystal X-ray analysis and the bulk phase purity of these MOFs was assessed using PXRD and FT-IR analysis. To check the stability of these MOFs, thermogravimetric analysis (TGA) was carried out. To analyze the robustness of these MOFs, the PXRD of the samples was also collected at different pH levels. These MOFs were further explored as Lewis acid catalysts for the alcoholysis of epoxides and the activity of these catalysts depend on the open metal sites present in the MOFs. The catalytic activity follows the order: Ca-MOF-2 > Ca-MOF-4 > Ca-MOF-1 > Ca-MOF-3. The activity was also checked with various epoxide substrates using Ca-MOF-2. Density functional theory (DFT) calculations also support this trend with the help of the thermodynamic feasibility of epoxide binding, considering model MOF structures. The weak interaction between the epoxide oxygen and the metal centre of the most stable MOF structure has also been clarified by computational studies.

9.
Dalton Trans ; 53(23): 9979-9994, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38812408

RESUMO

Herein, we present a dark-green crystalline tetranuclear Cu(II) Schiff base complex {C1 = [Cu4L4](ClO4)4(DMF)4(H2O)} using a N,N,O donor ligand (HL), namely 2-(((2-hydroxypropyl)imino)methyl)-6-methoxyphenol. Spectro-photometrical investigation on the ß-lactamase-like activity of this coordinately saturated system revealed its catalytic inefficiency towards hydrolysis of nitrocefin as a model substrate. This complex has attracted significant interest as a promising photo-catalyst owing to its narrow band gap (2.40 eV) as predicted from DFT calculations and its higher responsivity towards UV light. Therefore, C1 is effectively involved in the photocatalytic reduction of perchlorate to Cl- in the presence of a hole scavenger (H2O-MeOH) under prolonged UV irradiation and itself becomes photo-cleaved to yield a new dark-brown colored chlorobridged dinuclear crystalline complex C2 {[CuL(H2O)2Cl3]H2O}. Furthermore, C2 was deployed as a functional ß-lactamase model and was found to show a remarkable catalytic proficiency towards the hydrolysis of nitrocefin in 70 : 30 (V/V) MeOH-H2O medium. This pro-catalyst C2 has been speculated to generate an aqua bridged active catalyst that plays a crucial factor in hydrolysis. This phenomenon was again experimentally established by potentiometric pH titration where C2 displays only one pKa value (7.11) in the basic pH range, indicating the deprotonation of the bridged water molecule. Based on several other kinetic studies, it may be postulated that the hydrolysis of nitrocefin is initiated by the nucleophilic attack of a bridging hydroxide, followed by very fast protonation of the intermediate to furnish the hydrolyzed product. It is noteworthy that the rate of nitrocefin hydrolysis is greatly inhibited in the presence of external chloride concentration. To the best of our knowledge, this is the first report on the photochemical behavior of such a tetranuclear copper(II) Schiff base complex. Our current interest is focused on inventing a potent ß-lactamase inhibitory therapeutic as well as elucidating its mechanism through comprehensive chemical analysis.


Assuntos
Complexos de Coordenação , Cobre , Teoria da Densidade Funcional , Processos Fotoquímicos , Raios Ultravioleta , beta-Lactamases , Cobre/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Hidrólise , Resistência Microbiana a Medicamentos , Estrutura Molecular
10.
J Comput Chem ; 34(22): 1907-16, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23712937

RESUMO

The binding properties of a series of benzenesulfonamide inhibitors (4-substituted-ureido-benzenesulfonamides, UBSAs) of human carbonic anhydrase II (hCA II) enzyme with active site residues have been studied using a hybrid quantum mechanical/molecular mechanical (QM/MM) model. To account for the important docking interactions between the UBSAs ligand and hCA II enzyme, a molecular docking program AutoDock Vina is used. The molecular docking results obtained by AutoDock Vina revealed that the docked conformer has root mean square deviation value less than 1.50 Å compared to X-ray crystal structures. The inhibitory activity of UBSA ligands against hCA II is found to be in good agreement with the experimental results. The thermodynamic parameters for inhibitor binding show that hydrogen bonding, hydrophilic, and hydrophobic interactions play a major role in explaining the diverse inhibitory range of these derivatives. Additionally, natural bond orbital analysis is performed to characterize the ligand-metal charge transfer stability. The insights gained from this study have great potential to design new hCA-II inhibitor, 4-[3-(1-p-Tolyl-4-trifluoromethyl-1H-pyrazol-3-yl)-ureido]-benzenesulfonamide, which belongs to the family of UBSA inhibitors and shows similar type of inhibitor potency with hCA II. This work also reveals that a QM/MM model and molecular docking method are computationally feasible and accurate for studying substrate-protein inhibition.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Teoria Quântica , Sulfonamidas/farmacologia , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Termodinâmica , Benzenossulfonamidas
11.
J Phys Chem A ; 117(7): 1601-13, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23330972

RESUMO

Density functional theory was applied to study the interaction of group IIb transition-metal cations (Zn(2+), Cd(2+), and Hg(2+)) with one and two fully or partially deprotonated 3-mercaptopropionic acid ligands. In this investigation, we determined the geometries of all possible complexes resulting from the coordination of the metal ions with the ligands at different binding sites selected on each ligand. The relative energies of the complexes, metal-ion affinities, free energies, and entropies were also determined. The natures of the bonds were critically analyzed by natural bond orbital (NBO) analysis and clarified further using the atoms-in-molecules (AIM) approach. The substantial influence of the solvent (water) polarization on the energetics, geometries, and bonding of the molecular complexes was also investigated by the conductor-like screening solvation model (COSMO). In an attempt to simulate the complexes in an aqueous environment, water molecules were added explicitly to complete the coordination sphere of the metal cations, and the corresponding metal-ion affinities were calculated to study the effect of microhydration.


Assuntos
Ácido 3-Mercaptopropiônico/química , Cátions Bivalentes/química , Simulação por Computador , Complexos de Coordenação/química , Elementos de Transição/química , Ligantes , Modelos Moleculares , Termodinâmica
12.
J Phys Chem A ; 117(18): 3739-50, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23586638

RESUMO

Vinyl acetate [VA (CH3COOC2H3)] is an important unsaturated and oxygenated volatile organic compound responsible for atmospheric pollution. In this work, possible reaction mechanisms for the degradation of OH-initiated atmospheric oxidation of VA are investigated. The potential energy surfaces (PESs) for the reaction of OH radical with VA in the presence of O2 and NO have been studied using the M06-2X/6-311++G(d,p) method. The initial addition reactions of more and less substituted ethylenic C-atoms of VA are treated separately, followed by a conventional transition state theory (TST) calculation for reaction rates. The direct H-abstraction mechanism and kinetics have also been studied. The initial OH addition occurs through a prereactive complex, and the calculated rate constants in the temperature range 250-350 K for both the addition reactions are found to have negative temperature dependence. The calculation indicates that the reaction proceeds predominantly via the addition of OH radical to the double bond rather than the direct abstraction of H-atoms in VA. IM1 [CH3C(O)O(•)CHCH2OH] and IM2 [CH3C(O)OCH(OH)(•)CH2], the OH adduct complexes formed initially, react with ubiquitous O2 followed by NO before their rearrangement. The formation of the prereactive complex plays an important role in reaction mechanism and kinetics. The calculated rate constant, k298K = 1.61 × 10(-11) cm(3) molecule(-1) s(-1), is well harmonized with the previous experimental data, k298K = (2.48 ± 0.61) × 10(-11) cm(3) molecule(-1) s(-1) (Blanco et al.) and k298K = (2.3 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1) (Picquet-Varrult et al.). Additionally, consistent and reliable enthalpies of formation at 298.15 K (ΔfH°298.15) have been computed for all the species involved in the title reaction using the composite CBS-QB3 method. The theoretical results confirm that the major products are formic acetic anhydride, acetic acid, and formaldehyde in the OH-initiated oxidation of VA in the presence of O2 and NO, which are in excellent agreement with the experimental findings.


Assuntos
Poluentes Atmosféricos/química , Radical Hidroxila/química , Óxido Nítrico/química , Oxigênio/química , Compostos de Vinila/química , Atmosfera/química , Cinética , Oxirredução , Teoria Quântica , Temperatura , Termodinâmica
13.
J Phys Chem A ; 117(16): 3496-506, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23540856

RESUMO

trans-2-Chlorovinyldichloroarsine (lewisite, L agent, Lew-I) acts as a blistering agents. British anti-lewisite (BAL, 2,3-dimercaptopropanol) has long been used as an L-agent antidote. The main reaction channels for the detoxification proceed via breaking of As-Cl bonds and formation of As-S bonds, producing stable, nontoxic ring product [(2-methyl-1,3,2-dithiarsolan-4-yl)methanol]. M06-2X/GENECP calculations have been carried out to establish the enhanced rate of detoxification mechanism in the presence of NH3 and H2O catalysts in both gas and solvent phases, which has been modeled by use of the polarized continuum model (PCM). In addition, natural bond orbital (NBO) and atoms in molecules (AIM) analysis have been performed to characterize the intermolecular hydrogen bonding in the transition states. Transition-state theory (TST) calculation establishes that the rates of NH3-catalyzed (2.88 × 10(-11) s(-1)) and H2O-catalyzed (2.42 × 10(-11) s(-1)) reactions are reasonably faster than the uncatalyzed detoxification (5.44 × 10(-13) s(-1)). The results obtained by these techniques give new insight into the mechanism of the detoxification process, identification and thermodynamic characterization of the relevant stationary species, the proposal of alternative paths on modeled potential energy surfaces for uncatalyzed reaction, and the rationalization of the mechanistic role played by catalysts and solvents.


Assuntos
Amônia/química , Antídotos/química , Arsenicais/química , Quelantes/química , Substâncias para a Guerra Química/química , Água/química , Catálise , Dimercaprol/química , Ligação de Hidrogênio , Cinética , Modelos Químicos , Teoria Quântica , Soluções , Termodinâmica
14.
J Chem Phys ; 138(16): 164319, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23635150

RESUMO

The performance of double hybrid density functionals (DHDFs) has been assessed by studying the spectroscopic properties and potential energy curves of OCS-C2H4 (carbonyl sulfide-ethylene) and OCS-C4H6 (carbonyl sulfide-dimethylacetylene) van der Waals complexes. Both dispersion corrected and uncorrected DHDF theories have been applied to study the intermolecular interaction energies, stability, spectroscopic parameters, rigidity, and binding energies or depths of the potential well of the weakly bound complexes and also to explore the possibility of formation of three isomers of each complex. The correlation consistent valence triple zeta quality basis set is used to investigate the complexes. The calculated results provide insight into the computational methods applied to the weakly bound complexes. The double hybrid density functional B2PLYP and mPW2PLYP methods with dispersion corrections (B2PLYP-D2, B2PLYP-D3 and mPW2PLYP-D2, mPW2PLYP-D3) performed better over the B2PLYP and mPW2PLYP density functional methods without dispersion correction to deal with the weak dispersion interaction that prevails in these complexes. The results obtained by the dispersion-corrected density functional mPW2PLYP-D2 and mPW2PLYP-D3 methods agree very well with the earlier experimental values wherever available. The contributing components of the interaction energy have been analyzed by the symmetry-adapted perturbation theory (SAPT, here, SAPT0) to get insight into the interaction energy.


Assuntos
Hidrocarbonetos/química , Teoria Quântica , Óxidos de Enxofre/química , Interações Hidrofóbicas e Hidrofílicas
15.
J Chem Phys ; 139(23): 234303, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359363

RESUMO

The structures, energies, isomerization, and decomposition pathways of small ionic silicon oxide clusters, SiO(n)(+) (n = 3, 4), on doublet and quartet energy surfaces are investigated by density functional theory. New structural isomers of these ionic clusters have been obtained with this systematic study. The energy ordering of the isomeric cluster ions on doublet spin surface is found to follow the same general trend as that of the neutral ones, while it differs on the quartet surface. Our computational results reveal the energetically most preferred decomposition pathways of the ionic clusters on both spin surfaces. To comprehend the reaction mechanism, bonding evolution theory has also been employed using atoms in molecules formalism. The possible reasons behind the structural deformation of some isomers on quartet surface have also been addressed. Our results are expected to provide important insight into the decomposition mechanism and relative stability of the SiO(n)(+) clusters on both the energy surfaces.

16.
J Appl Genet ; 64(3): 431-443, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450243

RESUMO

Traditional maize is poor in vitamin-E [α-tocopherol (α-T): 6-8 ppm], vitamin-A [provitamin-A (proA): 1-2ppm], lysine (0.150-0.2-50%), and tryptophan (0.030-0.040%). Here, we combined favourable alleles of vte4, crtRB1, and opaque2 (o2) genes in the parents of maize hybrids, viz., APQH-10 (PMI-PV-9 × PMI-PV-14) and APQH-11 (PMI-PV-9 × PMI-PV-15) using molecular breeding. Gene-specific markers were successfully used to select vte4, crtRB1, and o2 in BC1F1, BC2F1, and BC2F2 generations. Simple sequence repeats (104-109) were used for background selection, leading to an average recovery of 94% recurrent parent genome. The introgressed inbreds possessed significantly higher α-T: 18.38 ppm, α-/γ-tocopherol (α-/γ-T: 52%), and α-/total tocopherol (α-/TT: 32%) compared to original inbreds (α-T: 8.17 ppm, α-/γ-T: 25%, α-/TT: 18%). These newly derived inbreds also possessed higher ß-carotene (BC: 8.91 ppm), ß-cryptoxanthin (BCX: 1.27 ppm), proA (9.54 ppm), lysine (0.348%), and tryptophan (0.082%) compared to traditional maize inbreds. The reconstituted hybrids recorded higher α-T (2.1-fold), α-/γ-T (1.9-fold), and α-/TT (1.6-fold) over the original hybrids. These reconstituted hybrids were also rich in BC (5.7-fold), BCX (3.3-fold), proA (5.3-fold), lysine (1.9-fold), and tryptophan (2.0-fold) over the traditional hybrids. The reconstituted hybrids had similar grain yield and phenotypic characteristics to original versions. These multinutrient-rich maize hybrids hold great potential to alleviate malnutrition in sustainable and cost-effective manner.


Assuntos
Lisina , Zea mays , Zea mays/genética , Lisina/genética , Triptofano/genética , Melhoramento Vegetal , Marcadores Genéticos , Valor Nutritivo , Vitaminas
17.
J Phys Chem A ; 116(10): 2536-46, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22339374

RESUMO

Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P-OAr linkages through nucleophilic attack is considered to be the major degradation pathway for FN. One simple nucleophile, hydroxide (OH(-)), and two different α-nucleophiles, hydroperoxide (OOH(-)) and hydroxylamine anion (NH(2)O(-)), have been considered for this study. Nucleophilic attack at the two different centers, S(N)2@P and S(N)2@C, has been monitored, and the computed reaction energetics confirms that the S(N)2@P reactions are favorable over the S(N)2@C reactions for all the nucleophiles. All electronic structure calculations for the reaction are performed at DFT-B3LYP/6-31+G(d) level of theory followed by a refinement of energy at ab initio MP2/6-311++G(2d,2p) level. The effect of aqueous polarization on both the S(N)2 reactions is taken into account employing the conductor-like screening model (COSMO) as well as polarization continuum model (PCM) at B3LYP/6-31+G(d) level of theory. Relative performance of the two α-nucleophiles, OOH(-) and NH(2)O(-), at the P center has further been clarified using natural bond orbital (NBO), conceptual DFT, and atoms in molecules (AIM) approaches. The strength of the intermolecular hydrogen bonding in the transition states and topological properties of the electron density distribution for -X-H···S (X = O, N) intermolecular hydrogen bonds are the subject of NBO and AIM analysis, respectively. Our calculated reaction energetics and electronic properties suggest that the relative order of nucleophilicity for the nucleophiles is OOH(-) > NH(2)O(-) > OH(-) for the S(N)2@P, whereas for the S(N)2@C the order, which gets little altered, is NH(2)O(-) > OOH(-) > OH(-).


Assuntos
Fenitrotion/química , Inseticidas/química , Teoria Quântica , Estrutura Molecular
18.
J Phys Chem A ; 116(32): 8382-96, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22830557

RESUMO

The mechanism for the aminolysis of a model nerve agent, O,S-dimethyl methylphosphonothiolate, is investigated both at density functional level using M062X method with 6-311++G(d,p) basis set and at ab initio level using the second-order Møller-Plesset perturbation theory (MP2) with the 6-311+G(d,p) basis set. The catalytic role of an additional NH(3) and H(2)O molecule is also examined. The solvent effects of acetonitrile, ethanol, and water are taken into account employing the conductor-like screening model (COSMO) at the single-point M062X/6-311++G(d,p) level of theory. Two possible dissociation pathways, methanethiol and methyl alcohol dissociations, along with two different neutral mechanisms, a concerted one and a stepwise route through two neutral intermediates, for each pathway are investigated. Hyperconjugation stabilization that has an effect on the stability of generated transition states are investigated by natural bond order (NBO) approach. Additionally, quantum theory of atoms in molecules analysis is performed to evaluate the bond critical (BCP) properties and to quantify strength of different types of interactions. The calculated results predict that the reaction of O,S-dimethyl methylphosphonothiolate with NH(3) gives rise to parallel P-S and P-O bond cleavages, and in each cleavage the neutral stepwise route is always favorable than the concerted one. The mechanism of NH(3) and H(2)O as catalyst is nearly similar, and they facilitate the shuttle of proton to accelerate the reaction. The steps involving the H(2)O-mediated proton transfer are the most suitable ones. The first steps for the stepwise process, the formation of neutral intermediate, are the rate-determining step. It is observed that in the presence of catalyst the reaction in the stepwise path possesses almost half the activation energy of the uncatalyzed one. A bond-order analysis using Wiberg bond indexes obtained by NBO calculation predicts that usually all individual steps of the reactions occur in a concerted fashion showing equal progress along different reaction coordinates.


Assuntos
Substâncias para a Guerra Química/química , Compostos Organotiofosforados/química , Prótons , Acetonitrilas , Amônia , Catálise , Simulação por Computador , Etanol , Hidrólise , Cinética , Modelos Químicos , Mimetismo Molecular , Teoria Quântica , Solventes , Termodinâmica , Água
19.
J Mol Graph Model ; 117: 108289, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35964364

RESUMO

The stabilization of non-IPR fullerenes for their isolation and characterization is an area of recent interest. In the present study, we have explored the stabilization techniques of C72 isomers via endo and exo-modifications and finally approached dual modification. A total of four isomers of C72 have been considered in this study; among them, one is IPR derivative (1), and the rest are non-IPR derivatives with one (2) and two (3 and 4) fused pentagon rings. First, we have studied the endohedral modification by encapsulating one and two La atoms in the C72 cavity. Secondly, we have exohedrally modified the C72 isomers via chlorination by adding four and eight chlorides, respectively. Our final approach is to study the dual modification, where we have implemented both endo exo-modifications together. This dual modification can be achieved in two ways: exo followed by endo and endo followed by exo. For each modification, the relative stability of every modified C72 derivative has been checked by calculating the relative energy with respect to the most stable modified analogue. To find out whether these modifications are energetically feasible or not, we have calculated the binding energy of each modified C72 isomer. The binding energy calculation reveals that the encapsulation and exo-modification techniques are good enough to stabilize the non-IPR C72 derivatives. Moreover, the effectiveness of dual modification has also been established from the enhanced binding energy compared to either endo- or exo-modification. We have also studied the NPA charges on the encapsulated La atoms for each endo- and dual-modified C72 derivative. Furthermore, the AIM study has also been perceived to find out the interaction between the La atom and the fullerene cages for both mono- and di-encapsulated fullerene derivatives and also between La-La centres for di-encapsulated derivatives. Overall, the present theoretical study will provide an idea about the stability of the modified C72 derivatives, which will help the experimentalists to design new strategies for synthesizing modified non-IPR fullerene derivatives that have vast applications in the medicinal and industrial fields.


Assuntos
Fulerenos , Cloretos , Fulerenos/química , Isomerismo , Modelos Moleculares
20.
Dalton Trans ; 51(18): 7174-7187, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35470835

RESUMO

Efficient detection of arsenate (AsO43-) from contaminated drinking water extracted from underground has become a matter of utmost necessity and an exquisite challenge owing to the growing public health issue due to arsenicosis. In order to combat this we planned to detect arsenate with the naked eye under UV light using a novel chemosensor material whose structure and functioning as a sensor could be certified mechanistically. Hence we were encouraged to synthesize two differently O-substituted imidazole based homologous ligands: C1 (HL1 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-ethoxyphenol) and C2 (HL2 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-methoxyphenol). To accomplish the purposeful exploration of the luminescent sensor, we considered Chelation Enhanced Fluorescence (CHEF) and kept on searching for a metal cation that would be able to turn on the fluorescence of the ligands. Considering Zn(II) as the most suitable candidate, luminescent complexes D1 and D2 ({[Zn2(L1)2(I)2](DMF)} and [Zn2(L2)2(I)2](DMF), respectively) were synthesized and characterized by SXRD, UV-Vis, FT-IR, and photoluminescence spectroscopy. In spite of the resemblance in the solid state structures of D1 and D2, the selective response of D1 towards arsenate with high quenching constants (2.13 × 106), unlike D2, has been demonstrated mechanistically with steady state and time resolved fluorescence titration, solution phase ESI-MS spectral analysis and DFT studies. The selectivity and sensitivity of the sensor D1 explicitly make this material a potent candidate for arsenate detection due to its very low detection limit (8.2 ppb), low cost and user friendly characteristics. Real life implementation of this work in a test strip is expected to prove beneficial for public health to identify arsenate polluted water.


Assuntos
Água Potável , Corantes Fluorescentes , Arseniatos , Água Potável/análise , Corantes Fluorescentes/química , Imidazóis , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA