Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Am Chem Soc ; 145(10): 5655-5663, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867088

RESUMO

High catalytic activities of Ru-PNP [Ru = ruthenium; PNP = bis alkyl- or aryl ethylphosphinoamine complexes in ionic liquids (ILs) were obtained for the reversible hydrogenation of CO2 and dehydrogenation of formic acid (FA) under exceedingly mild conditions and without sacrificial additives. The novel catalytic system relies on the synergic combination of Ru-PNP and IL and proceeds with CO2 hydrogenation already at 25 °C under a continuous flow of 1 bar of CO2/H2 (1:5), leading to 14 mol % FA with respect to the IL. A pressure of 40 bar of CO2/H2 (1:1) provides 126 mol % of FA/IL corresponding to a space-time yield (STY) of FA of 0.15 mol L-1 h-1. The conversion of CO2 contained in imitated biogas was also achieved at 25 °C. Furthermore, the Ru-PNP/IL system catalyzes FA dehydrogenation with average turnover frequencies up to 11,000 h-1 under heat-integrated conditions for proton-exchange membrane fuel cell applications (<100 °C). Thus, 4 mL of a 0.005 M Ru-PNP/IL system converted 14.5 L FA over 4 months with a turnover number exceeding 18,000,000 and a STY of CO2 and H2 of 35.7 mol L-1 h-1. Finally, 13 hydrogenation/dehydrogenation cycles were achieved with no sign of deactivation. These results demonstrate the potential of the Ru-PNP/IL system to serve as a FA/CO2 battery, a H2 releaser, and a hydrogenative CO2 converter.

2.
J Am Chem Soc ; 145(30): 16584-16596, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487055

RESUMO

In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-C3N4) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 µM H2O2 in 7 h from alkaline water and up to 1800 µM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance. Interestingly, unlike the usual two-electron oxygen reduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction (WOR) process in which both the direct and indirect WOR processes occurred; namely, photoinduced h+ directly oxidized H2O to H2O2 via a one-step 2e- WOR, and photoinduced h+ first oxidized a hydroxide (OH-) ion to generate a hydroxy radical (•OH), and H2O2 was formed indirectly by the combination of two •OH. We have characterized the material, at the catalytic sites, at the atomic level using electron paramagnetic resonance, X-ray absorption near edge structure, extended X-ray absorption fine structure, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, magic-angle spinning solid-state NMR spectroscopy, and multiscale molecular modeling, combining classical reactive molecular dynamics simulations and quantum chemistry calculations.

3.
Chem Soc Rev ; 51(22): 9371-9423, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36305783

RESUMO

The transformation of carbon dioxide (CO2) into useful chemicals, advanced materials, and energy is a long-standing challenge in both fundamental science and industry. In recent years, utilization of CO2 in the presence of inexpensive and non-negligible environmentally friendly 3d metal-based catalysts (Fe, Mn, Co, Ni, Cu and Ti) has become one of the most attractive topics. Particular attention has been given to the synthesis of carboxylic acids and their derivatives since these molecules serve as key intermediates in the chemical, fertilizer, and pharmaceutical sectors. Considering numerous challenges linked with CO2 reactivity, a number of research groups have recently focused on the transformation of CO2 into carboxylic acids by following thermo-, photo-, and electrochemical strategies. However, facile access to such acids remains a vital challenge in catalysis and in organic synthesis owing to the high stability of the CO2 molecule in which the carbon atom has the highest oxidation state. Another hurdle is to solve the selectivity issue caused by the reaction of different catalytic systems with CO2 in the presence of reactive functional group-containing molecules. Despite all these issues, a wide range of transition metal-based catalysts have been applied in this direction, but owing to their cheaper price and inherent reactivity, 3d metals are at the forefront in the CO2 utilization domain. Considering these, we aim to summarise recent advances (over the past five years) of 3d-metal complexes and their reactivity towards the activation of CO2 for the synthesis of carboxylic acids. Furthermore, we discuss current research trends, knowledge gaps, and invigorating perspectives on future advances.


Assuntos
Ácidos Carboxílicos , Elementos de Transição , Ácidos Carboxílicos/química , Dióxido de Carbono/química , Catálise , Elementos de Transição/química , Metais/química
4.
Chimia (Aarau) ; 77(12): 830-835, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131406

RESUMO

The escalating accumulation of plastic waste in landfills and marine environments has become a pressing concern to society. Among all plastic-based waste, polystyrenes are widely utilized as a commodity plastic and present very low recyclability. To improve this scenario, photocatalysis has recently become one of the viable techniques which can be performed under mild conditions. In this concise review, we have highlighted recent advancements in the valorization of polystyrene-based plastic waste by mainly focusing on the selective functionalization of the C-H bonds. This strategy clearly holds strong promise for the sustainable and efficient conversion of polystyrene-based waste and contributes to the reduction of waste and resource conservation.

5.
J Am Chem Soc ; 144(6): 2603-2613, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129333

RESUMO

The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0-5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 µM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations.

6.
Angew Chem Int Ed Engl ; 61(49): e202212083, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36227269

RESUMO

π-π stacking and ion-pairing interactions induced the generation of α-amino radicals under the irradiation of visible light without the requirement of an expensive photocatalyst. This strategy enabled the construction of functionalized amines via three-component coupling reactions with broad scope (we report >50 examples with an up to 90 % yield). This synthetic pathway also delivered complex functionalized amines with a very high yield. Quantum chemistry Density Functional Theory (DFT) calculations identified π-π stacked ionic complexes; time-dependent DFT was employed to simulate the absorption spectra, and nudged elastic band (NEB) methodology provided a possible interaction/reaction picture of the selected species.

7.
Chemistry ; 26(2): 390-395, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31596010

RESUMO

Dearomatisation of indole derivatives to the corresponding isatin derivatives has been achieved with the aid of visible light and oxygen. It should be noted that isatin derivatives are highly important for the synthesis of pharmaceuticals and bioactive compounds. Notably, this chemistry works excellently with N-protected and protection-free indoles. Additionally, this methodology can also be applied to dearomatise pyrrole derivatives to generate cyclic imides in a single step. Later this methodology was applied for the synthesis of four pharmaceuticals and a pesticide called dianthalexin B. Detailed mechanistic studies revealed the actual role of oxygen and photocatalyst.


Assuntos
Indóis/química , Luz , Praguicidas/química , Preparações Farmacêuticas/química , Pirróis/química , Catálise , Imidas/química , Praguicidas/síntese química , Preparações Farmacêuticas/síntese química
8.
Angew Chem Int Ed Engl ; 56(35): 10559-10563, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28678430

RESUMO

Ionic liquids (ILs) are versatile solvents and catalysts for the synthesis of quinazoline-2,4-dione from 2-aminobenzonitrile and CO2 . However, the role of the IL in this reaction is poorly understood. Consequently, we investigated this reaction and showed that the IL cation does not play a significant role in the activation of the substrates, and instead plays a secondary role in controlling the physical properties of the IL. A linear relationship between the pKa of the IL anion (conjugate acid) and the reaction rate was identified with maximum catalyst efficiency observed at a pKa of >14.7 in DMSO. The base-catalyzed reaction is limited by the acidity of the quinazoline-2,4-dione product, which is deprotonated by more basic catalysts, leading to the formation of the quinazolide anion (conjugate acid pKa 14.7). Neutralization of the original catalyst and formation of the quinazolide anion catalyst leads to the observed reaction limit.

9.
Chemistry ; 22(21): 7050-3, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-26991132

RESUMO

This article describes a selective reduction of functionalized amides, including N-acyl amino esters and dipeptides, to the corresponding amines using simple [Rh(acac)(cod)]. The catalyst shows excellent chemoselectivity in the presence of different sensitive functional moieties.


Assuntos
Amidas/química , Aminas/química , Dipeptídeos/química , Ródio/química , Silanos/química , Catálise , Ésteres/química , Oxirredução
10.
Angew Chem Int Ed Engl ; 55(1): 292-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26577114

RESUMO

We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups.

11.
Chimia (Aarau) ; 69(12): 765-768, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26842327

RESUMO

The utilization of CO(2) as a C1 synthon is becoming increasingly important as a feedstock derived from carbon capture and storage technologies. Herein, we describe some of our recent research on carbon dioxide valorization, notably, using organocatalysts to convert CO(2) into carboxylic acid, ester, formyl and methyl groups on various organic molecules. We describe these studies within the broader context of CO(2) capture and valorization and suggest approaches for future research.

12.
Angew Chem Int Ed Engl ; 54(42): 12389-93, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26189442

RESUMO

Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed.


Assuntos
Amidas/química , Aminoácidos/química , Ésteres/química , Compostos Organometálicos/química , Peptídeos/química , Ródio/química , Catálise , Estrutura Molecular , Oxirredução
13.
J Am Chem Soc ; 136(25): 8851-4, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24905079

RESUMO

Copper-catalyzed cascade reactions between alkenes or alkynes and diaryliodonium salts form carbocyclic products in a single step. Arylation of the unsaturated functional group is proposed to form a carbocation intermediate that facilitates hydride shift pathways to translocate the positive charge to a remote position and enables ring formation via a Friedel-Crafts-type reaction.

14.
Angew Chem Int Ed Engl ; 53(47): 12876-9, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25256038

RESUMO

N-methylation of amines is an important step in the synthesis of many pharmaceuticals and has been widely applied in the preparation of other key intermediates and chemicals. Therefore, the development of efficient methylation methods has attracted considerable attention. In this respect, carbon dioxide is an attractive C1 building block because it is an abundant, renewable, and nontoxic carbon source. Consequently, we developed a highly chemoselective, metal-free catalytic system that operates under ambient conditions for the N-methylation of amines.

15.
Nat Commun ; 15(1): 5208, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890327

RESUMO

Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (-CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding ß-trifluoromethylated products. The main reason for this limitation arises from the fact that -CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (ß) position of an alkene. On the contrary, functionalization of the -CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the -CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (-SO2R) at the ß-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (ß) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.

16.
Nat Commun ; 15(1): 1474, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368416

RESUMO

α,α-Disubstituted α-amino acids (α-AAs) have improved properties compared to other types of amino acids. They serve as modifiers of peptide conformation and as precursors of bioactive compounds. Therefore, it has been a long-standing goal to construct this highly valuable scaffold efficiently in organic synthesis and drug discovery. However, access to α,α-disubstituted α-AAs is highly challenging and largely unexplored due to their steric constraints. To overcome these, remarkable advances have been made in the last decades. Emerging strategies such as synergistic enantioselective catalysis, visible-light-mediated photocatalysis, metal-free methodologies and CO2 fixation offer new avenues to access the challenging synthesis of α,α-disubstituted α-AAs and continuously bring additional contributions to this field. This review article aims to provide an overview of the recent advancements since 2015 and discuss existing challenges for the synthesis of α,α-disubstituted α-AAs and their derivatives.


Assuntos
Aminoácidos , Descoberta de Drogas , Aminoácidos/química , Conformação Molecular , Técnicas de Química Sintética , Catálise
17.
Chem Sci ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39156935

RESUMO

Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.

18.
Chem Sci ; 15(29): 11488-11499, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39055026

RESUMO

The transformation of CO2 into value-added products from an impure CO2 stream, such as flue gas or exhaust gas, directly contributes to the principle of carbon capture and utilization (CCU). Thus, we have developed a robust iron-based heterogeneous photocatalyst that can convert the exhaust gas from the car into CO with an exceptional production rate of 145 µmol g-1 h-1. We characterized this photocatalyst by PXRD, XPS, ssNMR, EXAFS, XANES, HR-TEM, and further provided mechanistic experiments, and multi-scale/level computational studies. We have reached a clear understanding of its properties and performance that indicates that this highly robust photocatalyst could be used to design an efficient visible-light-mediated reduction strategy for the transformation of impure CO2 streams into value-added products.

19.
Nat Commun ; 14(1): 7604, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989749

RESUMO

Direct utilization of CO2 into organic synthesis finds enormous applications to synthesize pharmaceuticals and fine chemicals. However, pure CO2 gas is essential to achieve these transformations, and the purification of CO2 is highly cost and energy intensive. Considering this, we describe a straightforward synthetic route for the synthesis of γ-lactams, a pivotal core structure of bioactive molecules, by using commercially available starting materials (alkenes and amines) and impure CO2 stream (exhaust gas is collected from the car) as the carbon source. This blueprint features a broad scope, excellent functional group compatibility and application to the late-stage transformation of existing pharmaceuticals and natural products to synthesize functionalized γ-lactams. We believe that our strategy will provide direct access to γ-lactams in a very sustainable way and will also enhance the Carbon Capture and Utilization (CCU) strategy.

20.
Chem Sci ; 14(38): 10411-10419, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37799991

RESUMO

To date, [3 + 2] cycloadditions of diazo esters with alkynes or alkenes have been a robust tool to generate pyrazoles and pyrazolines. However, methods capable of generating donor/donor diazo species from readily available N-tosylhydrazones to furnish [3 + 2] cycloadditions, remain elusive. Herein, we describe the first visible-light-induced [3 + 2] cycloadditions of donor/donor diazo precursors with alkenes to afford pyrazoles and novel (spiro)pyrazolines bearing a quaternary center. This protocol shows a tolerable substrate scope covering versatile carbonyl compounds and alkenes. Late-stage functionalization of bioactive molecules, one-pot approach, and gram-scale synthesis have also been introduced successfully to prove the practicability. At last, mechanistic experiments and DFT studies suggested the formation of non-covalent interactions enabling the activation of N-tosylhydrazones and the formation of the donor/donor diazo intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA