RESUMO
Nucleic acid-binding dyes (NuABDs) are fluorogenic probes that light up after binding to nucleic acids. Taking advantage of their fluorogenicity, NuABDs have been widely utilized in the fields of nanotechnology and biotechnology for diagnostic and analytical applications. We demonstrate the potential of NuABDs together with an appropriate nucleic acid scaffold as an intriguing photocatalyst for precisely controlled atom-transfer radical polymerization (ATRP). Additionally, we systematically investigated the thermodynamic and electrochemical properties of the dyes, providing insights into the mechanism that drives the photopolymerization. The versatility of the NuABD-based platform was also demonstrated through successful polymerizations using several NuABDs in conjunction with diverse nucleic acid scaffolds, such as G-quadruplex DNA or DNA nanoflowers. This study not only extends the horizons of controlled photopolymerization but also broadens opportunities for nucleic acid-based materials and technologies, including nucleic acid-polymer biohybrids and stimuli-responsive ATRP platforms.
Assuntos
Corantes Fluorescentes , Processos Fotoquímicos , Polimerização , Catálise , Corantes Fluorescentes/química , Radicais Livres/química , DNA/química , Ácidos Nucleicos/química , Quadruplex GRESUMO
Exosomes are emerging as ideal drug delivery vehicles due to their biological origin and ability to transfer cargo between cells. However, rapid clearance of exogenous exosomes from the circulation as well as aggregation of exosomes and shedding of surface proteins during storage limit their clinical translation. Here, we demonstrate highly controlled and reversible functionalization of exosome surfaces with well-defined polymers that modulate the exosome's physiochemical and pharmacokinetic properties. Using cholesterol-modified DNA tethers and complementary DNA block copolymers, exosome surfaces were engineered with different biocompatible polymers. Additionally, polymers were directly grafted from the exosome surface using biocompatible photo-mediated atom transfer radical polymerization (ATRP). These exosome polymer hybrids (EPHs) exhibited enhanced stability under various storage conditions and in the presence of proteolytic enzymes. Tuning of the polymer length and surface loading allowed precise control over exosome surface interactions, cellular uptake, and preserved bioactivity. EPHs show fourfold higher blood circulation time without altering tissue distribution profiles. Our results highlight the potential of precise nanoengineering of exosomes toward developing advanced drug and therapeutic delivery systems using modern ATRP methods.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Exossomos/química , Engenharia de Proteínas/métodos , Humanos , Polimerização , Polímeros/química , Propriedades de SuperfícieRESUMO
Combining synthetic polymers with RNA paves the way for creating RNA-based materials with non-canonical functions. We have developed an acylation reagent that allows for direct incorporation of the atom transfer radical polymerization (ATRP) initiator into both short synthetic oligoribonucleotides and natural biomass RNA extracted from torula yeast. The acylation was performed in a quantitative yield. The resulting initiator-functionalized RNAs were used for grafting polymer chains from the RNA by photoinduced ATRP, resulting in RNA-polymer hybrids with narrow molecular weight distributions. The RNA initiator was used for the polymerization of oligo(ethylene oxide) methyl ether methacrylate, poly(ethylene glycol) dimethacrylate, and N-isopropylacrylamide monomers, resulting in RNA bottlebrushes, hydrogels, and stimuli-responsive materials. This approach, readily applicable to both post-synthetic and nature-derived RNA, can be used to engineer the properties of a variety of RNA-based macromolecular hybrids and assemblies providing access to a wide variety of RNA-polymer hybrids.
Assuntos
Polietilenoglicóis , Polímeros , Polimerização , MetacrilatosRESUMO
Photoinduced reversible-deactivation radical polymerization (photo-RDRP) techniques offer exceptional control over polymerization, providing access to well-defined polymers and hybrid materials with complex architectures. However, most photo-RDRP methods rely on UV/visible light or photoredox catalysts (PCs), which require complex multistep synthesis. Herein, we present the first example of fully oxygen-tolerant red/NIR-light-mediated photoinduced atom transfer radical polymerization (photo-ATRP) in a high-throughput manner under biologically relevant conditions. The method uses commercially available methylene blue (MB+) as the PC and [X-CuII/TPMA]+ (TPMA = tris(2-pyridylmethyl)amine) complex as the deactivator. The mechanistic study revealed that MB+ undergoes a reductive quenching cycle in the presence of the TPMA ligand used in excess. The formed semireduced MB (MBâ¢) sustains polymerization by regenerating the [CuI/TPMA]+ activator and together with [X-CuII/TPMA]+ provides control over the polymerization. This dual catalytic system exhibited excellent oxygen tolerance, enabling polymerizations with high monomer conversions (>90%) in less than 60 min at low volumes (50-250 µL) and high-throughput synthesis of a library of well-defined polymers and DNA-polymer bioconjugates with narrow molecular weight distributions (D < 1.30) in an open-air 96-well plate. In addition, the broad absorption spectrum of MB+ allowed ATRP to be triggered under UV to NIR irradiation (395-730 nm). This opens avenues for the integration of orthogonal photoinduced reactions. Finally, the MB+/Cu catalysis showed good biocompatibility during polymerization in the presence of cells, which expands the potential applications of this method.
RESUMO
The family Yadokariviridae, with the genera Alphayadokarivirus and Betayadokarivirus, includes capsidless non-segmented positive-sense (+) RNA viruses that hijack capsids from phylogenetically distant double-stranded RNA viruses. Yadokarivirids likely replicate inside the hijacked heterocapsids using their own RNA-directed RNA polymerase, mimicking dsRNA viruses despite their phylogenetic placement in a (+) RNA virus lineage. Yadokarivirids can have negative or positive impacts on their host fungi, through interactions with the capsid donor dsRNA viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Yadokariviridae, which is available at ictv.global/report/yadokariviridae.
Assuntos
Vírus de RNA , Vírus , Filogenia , Vírus/genética , Vírus de RNA/genética , Proteínas do Capsídeo/genética , Fungos , Genoma Viral , Replicação Viral , Vírion/genéticaRESUMO
Hyperbranched polymethacrylates were synthesized by green-light-induced atom transfer radical polymerization (ATRP) under biologically relevant conditions in the open air. Sodium 2-bromoacrylate (SBA) was prepared in situ from commercially available 2-bromoacrylic acid and used as a water-soluble inibramer to induce branching during the copolymerization of methacrylate monomers. As a result, well-defined branched polymethacrylates were obtained in less than 30â
min with predetermined molecular weights (36 000
RESUMO
We previously proposed a new virus lifestyle or yadokari/yadonushi nature exhibited by a positive-sense single-stranded RNA (ssRNA) virus, yadokari virus 1 (YkV1), and an unrelated double-stranded RNA (dsRNA) virus, yadonushi virus 1 (YnV1) in a phytopathogenic ascomycete, Rosellinia necatrix. We have proposed that YkV1 diverts the YnV1 capsid to trans-encapsidate YkV1 RNA and RNA-dependent RNA polymerase (RdRp) and replicate in the heterocapsid. However, it remains uncertain whether YkV1 replicates using its own RdRp and whether YnV1 capsid copackages both YkV1 and YnV1 components. To address these questions, we first took advantage of the reverse genetics tools available for YkV1. Mutations in the GDD RdRp motif, one of the two identifiable functional motifs in the YkV1 polyprotein, abolished its replication competency. Mutations were also introduced in the conserved 2A-like peptide motif, hypothesized to cleave the YkV1 polyprotein cotranslationally. Interestingly, the replication proficiency of YkV1 mutants in the host fungus agreed with the cleavage activity of the 2A-like peptide tested using a baculovirus expression system. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with a subset of YnV1 capsids solely packaging YkV1 dsRNA and RdRp. These results provide proof of concept that a capsidless positive-sense ssRNA [(+)ssRNA] virus is hosted by an unrelated dsRNA virus. IMPORTANCE Viruses typically encode their own capsids that encase their genomes. However, a capsidless positive-sense single-stranded RNA [(+)ssRNA] virus, YkV1, depends on an unrelated double-stranded RNA (dsRNA) virus, YnV1, for encapsidation and replication. We previously showed that YkV1 highjacks the capsid of YnV1 for trans-encapsidation of its own RNA and RdRp. YkV1 was hypothesized to divert the heterocapsid as the replication site, as is commonly observed for dsRNA viruses. Herein, mutational analyses showed that the RdRp and 2A-like domains of the YkV1 polyprotein are important for its replication. The active RdRp must be cleaved by a 2A-like peptide from the C-proximal protein. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with YnV1 capsids solely packaging YkV1 dsRNA and RdRp. This study provides proof of concept of a virus neo-lifestyle where a (+)ssRNA virus snatches capsids from an unrelated dsRNA virus to replicate with its own RdRp, thereby mimicking the typical dsRNA virus lifestyle.
Assuntos
Ascomicetos/virologia , Capsídeo/metabolismo , DNA de Cadeia Simples/metabolismo , Micovírus/enzimologia , Vírus de RNA/enzimologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , DNA de Cadeia Simples/genética , Micovírus/genética , Genoma Viral , Mutação , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/isolamento & purificação , Montagem de Vírus , Replicação ViralRESUMO
Exosomes are 30-200 nm sized extracellular vesicles that are increasingly recognized as potential drug delivery vehicles. However, exogenous exosomes are rapidly cleared from the blood upon intravenous delivery, which limits their therapeutic potential. Here, we report bioactive exosome-tethered poly(ethylene oxide)-based hydrogels for the localized delivery of therapeutic exosomes. Using cholesterol-modified DNA tethers, the lipid membrane of exosomes was functionalized with initiators to graft polymers in the presence of additional initiators and crosslinker using photoinduced atom transfer radical polymerization (ATRP). This strategy of tethering exosomes within the hydrogel network allowed their controlled release over a period of 1 month, which was much longer than physically entrapped exosomes. Exosome release profile was tuned by varying the crosslinking density of the polymer network and the use of photocleavable tethers allowed stimuli-responsive release of exosomes. The therapeutic potential of the hydrogels was assessed by evaluating the osteogenic potential of bone morphogenetic protein 2-loaded exosomes on C2C12 and MC3T3-E1 cells. Thus, ATRP-based exosome-tethered hydrogels represent a tunable platform with improved efficacy and an extended-release profile.
Assuntos
Exossomos , Hidrogéis , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/farmacologia , Polimerização , Polímeros/farmacologiaRESUMO
Here, we describe the full-length genome sequence of a novel ourmia-like mycovirus, tentatively named "Botryosphaeria dothidea ourmia-like virus 1" (BdOLV1), isolated from the phytopathogenic fungus Botryosphaeria dothidea strain 8A, associated with apple ring rot in Shanxi province, China. The complete BdOLV1 genome is comprised of a 2797-nucleotide positive-sense (+) single-stranded RNA (ssRNA) with a single open reading frame (ORF). The ORF putatively encodes a 642-amino-acid polypeptide with conserved RNA-dependent RNA polymerase (RdRp) motifs related to those of viruses of the family Botourmiaviridae. Phylogenetic analysis based on RdRp amino acid sequences showed that BdOLV1 is grouped with unclassified oomycete-infecting viruses closely related to members of the genus Botoulivirus in the family Botourmiaviridae. This is the first report of a novel (+)ssRNA virus in B. dothidea related to members of the genus Botoulivirus in the family Botourmiaviridae.
Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Ascomicetos/genética , Micovírus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genéticaRESUMO
The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of ß-1,4-linked glucosamine (deacetylated/D) and N-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially acetylated chitosan oligosaccharides from a chitosan polymer (DA = 35%, DPw = 905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4-DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective. We then compared all four monoacetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as bona fide information-carrying molecules.
Assuntos
Biopolímeros/metabolismo , Quitosana/metabolismo , Acetilação , Acetilglucosamina/metabolismo , Amidoidrolases/metabolismo , Glucosamina/metabolismo , Oryza/metabolismo , Polimerização , Especificidade por SubstratoRESUMO
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures. Polymers are either grafted-to or grown-from the biomacromolecule's surface, and characteristics including polymer molar mass, grafting density, and degree of branching can be controlled by changing reaction stoichiometries. The resultant conjugated products display a chimerism of properties such as polymer-induced enhancement in stability with maintained bioactivity, and while polymers are most often conjugated to proteins, they are starting to be attached to nucleic acids and lipid membranes (cells) as well. The fundamental studies with protein-polymer conjugates have improved our synthetic approaches, characterization techniques, and understanding of structure-function relationships that will lay the groundwork for creating new conjugated biomacromolecular products which could lead to breakthroughs in genetic and tissue engineering.
Assuntos
Materiais Biomiméticos , Biopolímeros , Engenharia Genética , Polimerização , Engenharia Tecidual , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Biopolímeros/química , Biopolímeros/uso terapêutico , Membrana Celular/metabolismo , Humanos , Relação Estrutura-AtividadeRESUMO
Rhizoctonia oryzae-sativae is a soil-borne basidiomycete fungus that causes aggregate sheath spot disease on rice worldwide. Here, we report the complete genome sequence of a partitivirus designated as Rhizoctonia oryzae-sativae partitivirus 1 (RosPV1) infecting this fungus. The genome of RosPV1 consists of two double-stranded RNA (dsRNA) segments. The larger segment, designated as dsRNA-1 (1,961 bp), contains a single open reading frame (ORF) that encodes a putative polypeptide with a conserved RNA-dependent RNA polymerase (RdRp) domain. The smaller segment, dsRNA-2 (1,819 bp), also has a single ORF, which is predicted to encode the capsid protein (CP). BLAST searches and phylogenetic analyses suggested that RosPV1 is a representative member of a new species within the genus Alphapartitivirus. This is the first report of an alphapartitivirus infecting the fungus R. oryzae-sativae.
Assuntos
Micovírus/isolamento & purificação , Vírus de RNA/isolamento & purificação , Rhizoctonia/virologia , Micovírus/classificação , Micovírus/genética , Genoma Viral , Oryza/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Rhizoctonia/fisiologia , Proteínas Virais/genéticaRESUMO
The dense localization of DNA on soluble nanoparticles can lead to effects distinct from equivalent amounts of the DNA in solution. However, the specific effect may depend on the nature of the assembly and the nanoparticle core. Here we examine the accessibility of densely packed DNA duplexes that extend from a bottle-brush polymer core. We find that unlike spherical nucleic acids, the DNA duplex bristles on the bottle-brush polymer remain accessible to sequence-specific cleavage by endonucleases. In addition, the hybridized strand of the duplex can be displaced through a toehold-mediated strand exchange even at the polymer interface. These results demonstrate that the DNA on bottle-brush polymer remains sufficiently flexible to allow enzymatic degradation or DNA hybridization.
Assuntos
DNA de Cadeia Simples/química , Nanopartículas/química , Ácidos Polimetacrílicos/química , Benzoxazóis/química , DNA de Cadeia Simples/genética , Endodesoxirribonucleases/química , Corantes Fluorescentes/química , Hidrólise , Substâncias Intercalantes/química , Metacrilatos/química , Hibridização de Ácido Nucleico , Compostos de Quinolínio/químicaRESUMO
Atom transfer radical polymerization (ATRP) can be carried out in a flask completely open to air using a biocatalytic system composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) with an active copper catalyst complex. Nanomolar concentrations of the enzymes and ppm amounts of Cu provided excellent control over the polymerization of oligo(ethylene oxide) methyl ether methacrylate (OEOMA500 ), generating polymers with high molecular weight (Mn >70 000) and low dispersities (1.13≤D≤1.27) in less than an hour. The continuous oxygen supply was necessary for the generation of radicals and polymer chain growth as demonstrated by temporal control and by inducing hypoxic conditions. In addition, the enzymatic cascade polymerization triggered by oxygen was used for a protein and DNA functionalized with initiators to form protein-b-POEOMA and DNA-b-POEOMA bioconjugates, respectively.
RESUMO
We report here the role and mechanism of specificity of a family 32 carbohydrate binding module (CBM32) of a glycoside hydrolase family 8 chitosanase from Paenibacillus elgii (PeCsn). Both the activity and mode of action of PeCsn toward soluble chitosan polymers were not different with/without the CBM32 domain of P. elgii (PeCBM32). The decreased activity of PeCsn without PeCBM32 on chitosan powder suggested that PeCBM32 increases the relative concentration of enzyme on the substrate and thereby enhanced enzymatic activity. PeCBM32 specifically bound to polymeric and oligomeric chitosan and showed very weak binding to chitin and cellulose. In isothermal titration calorimetry, the binding stoichiometry of 2 and 1 for glucosamine monosaccharide (GlcN) and disaccharide (GlcN)2, respectively, was indicative of two binding sites in PeCBM32. A three-dimensional model-guided site-directed mutagenesis and the use of defined disaccharides varying in the pattern of acetylation suggested that the amino groups of chitosan and the polar residues Glu-16 and Glu-38 of PeCBM32 play a crucial role for the observed binding. The specificity of CBM32 has been further elucidated by a generated fusion protein PeCBM32-eGFP that binds to the chitosan exposing endophytic infection structures of Puccinia graminis f. sp. tritici Phylogenetic analysis showed that CBM32s appended to chitosanases are highly conserved across different chitosanase families suggesting their role in chitosan recognition and degradation. We have identified and characterized a chitosan-specific CBM32 useful for in situ staining of chitosans in the fungal cell wall during plant-fungus interaction.
Assuntos
Proteínas de Bactérias/química , Quitosana/química , Dissacarídeos/química , Glucosamina/química , Glicosídeo Hidrolases/química , Modelos Moleculares , Paenibacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitosana/metabolismo , Dissacarídeos/metabolismo , Glucosamina/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutagênese Sítio-Dirigida , Paenibacillus/genética , Ligação Proteica , Domínios ProteicosRESUMO
Rhizosphere microbial community has diverse metabolic capabilities and plays a crucial role in maintaining plant health. Oligotrophic plant growth promoting rhizobacteria (PGPR), along with difficult-to-culture microbial fractions, might be involved synergistically in microbe-microbe and plant-microbe interactions in the rhizosphere. Among the difficult-to-culture microbial fractions, Acidobacteria constitutes the most dominant phylum thriving in rhizospheric soils. We selected effective PGPR for tomato and black gram and studied their effect on population densities of acidobacterial members. Three facultatively oligotrophic PGPR were identified through 16S rRNA gene sequencing as Sphingobacterium sp. (P3), Variovorax sp. (P4), and Roseomonas sp. (A2); the latter being a new report of PGPR. In presence of selected PGPR strains, the changes in population densities of Acidobacteria were monitored in metagenomic DNA extracted from bulk and rhizospheric soils of tomato and black gram using real time qPCR. A gradual increase in equivalent cell numbers of Acidobacteria members was observed over time along with a simultaneous increase in plant growth promotion by test PGPR. We report characterization of three effective PGPR strains and their effects on indigenous, underexplored difficult-to-culture phylum-Acidobacteria. We suggest that putative interactions between these two bacterial groups thriving in rhizospheric soils could be beneficial for plant growth.
Assuntos
Acidobacteria/crescimento & desenvolvimento , Rizosfera , Solanum lycopersicum/microbiologia , Vigna/microbiologia , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , DNA Bacteriano/genética , Genoma Bacteriano , Solanum lycopersicum/crescimento & desenvolvimento , Metagenômica , Filogenia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Densidade Demográfica , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Microbiologia do Solo , Vigna/crescimento & desenvolvimentoRESUMO
A DNA synthesizer was successfully employed for preparation of well-defined polymers by atom transfer radical polymerization (ATRP), in a technique termed AutoATRP. This method provides well-defined homopolymers, diblock copolymers, and biohybrids under automated photomediated ATRP conditions. PhotoATRP was selected over other ATRP methods because of mild reaction conditions, ambient temperature, tolerance to oxygen, and no need to introduce reducing agents or radical initiators. Both acrylate and methacrylate monomers were successfully polymerized with excellent control in the DNA synthesizer. Diblock copolymers were synthesized with different targeted degrees of polymerization and with high retention of chain-end functionality. Both hydrophobic and hydrophilic monomers were grafted from DNA. The DNA-polymer hybrids were characterized by SEC and DLS. The AutoATRP method provides an efficient route to prepare a range of different polymeric materials, especially polymer-biohybrids.
Assuntos
Automação/instrumentação , DNA/síntese química , Polímeros/síntese química , DNA/química , Radicais Livres/síntese química , Radicais Livres/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Polimerização , Polímeros/químicaRESUMO
Endonucleolytic ribozymes constitute a class of non-coding RNAs that catalyze single-strand RNA scission. With crystal structures available for all of the known ribozymes, a major challenge involves relating functional data to the physically observed RNA architecture. In the case of the hepatitis delta virus (HDV) ribozyme, there are three high-resolution crystal structures, the product state of the reaction and two precursor variants, with distinct mechanistic implications. Here, we develop new strategies to probe the structure and catalytic mechanism of a ribozyme. First, we use double-mutant cycles to distinguish differences in functional group proximity implicated by the crystal structures. Second, we use a corrected form of the Brønsted equation to assess the functional significance of general acid catalysis in the system. Our results delineate the functional relevance of atomic interactions inferred from structure, and suggest that the HDV ribozyme transition state resembles the cleavage product in the degree of proton transfer to the leaving group.
Assuntos
Hepatite D/virologia , Vírus Delta da Hepatite/enzimologia , RNA Catalítico/metabolismo , RNA Viral/metabolismo , Sequência de Bases , Domínio Catalítico , Vírus Delta da Hepatite/química , Vírus Delta da Hepatite/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Prótons , RNA Catalítico/química , RNA Viral/químicaRESUMO
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Assuntos
Quitina/análogos & derivados , Plantas/imunologia , Biotecnologia/métodos , Parede Celular/metabolismo , Quitina/metabolismo , Quitosana , Fungos/metabolismo , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Oligossacarídeos , Plantas/microbiologiaRESUMO
The combination of polymers with nucleic acids leads to materials with significantly advanced properties. To obviate the necessity and complexity of conjugating two macromolecules, a polymer initiator is described that can be directly covalently linked to DNA during solid-phase synthesis. Polymer can then be grown from the DNA bound initiator, both in solution after the DNA-initiator is released from the solid support as well as directly on the solid support, simplifying purification. The resulting polymer-DNA hybrids were examined by chromatography and fluorescence methods that attested to the integrity of hybrids and the DNA. The ability to use DNA-based supports expands the range of readily available molecules that can be used with the initiator, as exemplified by direct synthesis of a biotin polymer hybrid on solid-support. This method expands the accessibility and range of advanced polymer biohybrid materials.