Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Methods ; 220: 38-54, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890707

RESUMO

Recent advancements in omics technologies have unveiled a hitherto unknown group of short polypeptides called microproteins (miPs). Despite their size, accumulating evidence has demonstrated that miPs exert varied and potent biological functions. They act in paracrine, juxtracrine, and endocrine fashion, maintaining cellular physiology and driving diseases. The present study focuses on biochemical and biophysical analysis and characterization of twenty-four human miPs using distinct computational methods, including RIDAO, AlphaFold2, D2P2, FuzDrop, STRING, and Emboss Pep wheel. miPs often lack well-defined tertiary structures and may harbor intrinsically disordered regions (IDRs) that play pivotal roles in cellular functions. Our analyses define the physicochemical properties of an essential subset of miPs, elucidating their structural characteristics and demonstrating their propensity for driving or participating in liquid-liquid phase separation (LLPS) and intracellular condensate formation. Notably, miPs such as NoBody and pTUNAR revealed a high propensity for LLPS, implicating their potential involvement in forming membrane-less organelles (MLOs) during intracellular LLPS and condensate formation. The results of our study indicate that miPs have functionally profound implications in cellular compartmentalization and signaling processes essential for regulating normal cellular functions. Taken together, our methodological approach explains and highlights the biological importance of these miPs, providing a deeper understanding of the unusual structural landscape and functionality of these newly defined small proteins. Understanding their functions and biological behavior will aid in developing targeted therapies for diseases that involve miPs.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/química
2.
Cell Mol Life Sci ; 74(15): 2783-2794, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28289760

RESUMO

Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein-protein interactions, and protein-ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform-proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.


Assuntos
PTEN Fosfo-Hidrolase/análise , PTEN Fosfo-Hidrolase/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Polimorfismo de Nucleotídeo Único , Biossíntese de Proteínas , Conformação Proteica , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional
3.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 43-54, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27718363

RESUMO

Therapeutic protein kinase inhibitors are designed on the basis of kinase structures. Here, we define intrinsically disordered regions (IDRs) in structurally hybrid kinases. We reveal that 65% of kinases have an IDR adjacent to their kinase domain (KD). These IDRs are evolutionarily more conserved than IDRs distant to KDs. Strikingly, 36 kinases have adjacent IDRs extending into their KDs, defining a unique structural and functional subset of the kinome. Functional network analysis of this subset of the kinome uncovered FAK1 as topologically the most connected hub kinase. We identify that KD-flanking IDR of FAK1 is more conserved and undergoes more post-translational modifications than other IDRs. It preferentially interacts with proteins regulating scaffolding and kinase activity, which contribute to cytoskeletal remodeling. In summary, spatially and evolutionarily conserved IDRs in kinases may influence their functions, which can be exploited for targeted therapies in diseases including those that involve aberrant cytoskeletal remodeling.


Assuntos
Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal/química , Citoesqueleto/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional
4.
Methods ; 77-78: 69-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25449897

RESUMO

Intrinsically disordered proteins (IDPs) are proteins that lack stable higher order structures for the entire protein molecule or a significant portion of it. The discovery of IDPs evolved as an antithesis to the conventional structure-function paradigm wherein a higher order structure dictates protein function. Over the last decade, a number of proteins with functionally relevant unstructured regions have been discovered, which includes tumor suppressor PTEN. The protein domains that lack structure provide "hot-spots" for post-translational modifications (PTMs) and protein-protein interactions (PPIs), which facilitate their regulation and participation in multiple cellular processes. Consequently, dysregulation in IDPs contribute to aberrant cellular pathophysiology. Herein, we present PTEN and its translational isoform PTEN-L as a hybrid protein possessing ordered domain and intrinsically disordered C-terminal and an N-terminal tails. We review the role of intrinsic disorder in PTEN function and propose a methodology for the use of intrinsic disorder to study PTEN-regulated higher order protein-networks by associating basic principles of network biology to functional pathway analysis at the systems level.


Assuntos
Redes Reguladoras de Genes/genética , Proteínas Intrinsicamente Desordenadas/genética , PTEN Fosfo-Hidrolase/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Supressoras de Tumor/genética , Animais , Humanos , Proteínas Intrinsicamente Desordenadas/química , PTEN Fosfo-Hidrolase/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Supressoras de Tumor/química
5.
J Biol Chem ; 288(41): 29821-35, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23963458

RESUMO

Elevated levels of systemic and pulmonary leptin are associated with diseases related to lung injury and lung cancer. However, the role of leptin in lung biology and pathology, including the mechanism of leptin gene expression in the pathogenesis of lung diseases, including lung cancer, remains elusive. Here, using conditional deletion of tumor suppressor gene Pten in the lung epithelium in vivo in transgenic mice and human PTEN-null lung epithelial cells, we identify the leptin-driven feed-forward signaling loop in the lung epithelial cells. Leptin-mediated leptin/leptin-receptor gene expression likely amplifies leptin signaling that may contribute to the pathogenesis and severity of lung diseases, resulting in poor clinical outcomes. Loss of Pten in the lung epithelial cells in vivo activated adipokine signaling and induced leptin synthesis as ascertained by genome-wide mRNA profiling and pathway analysis. Leptin gene transcription was mediated by binding of transcription factors NRF-1 and CCAAT/enhancer-binding protein δ (C/EBP) to the proximal promoter regions and STAT3 to the distal promoter regions as revealed by leptin promoter-mutation, chromatin immunoprecipitation, and gain- and loss-of-function studies in lung epithelial cells. Leptin treatment induced expression of the leptin/leptin receptor in the lung epithelial cells via activation of MEK/ERK, PI3K/AKT/mammalian target of rapamycin (mTOR), and JAK2/STAT3 signaling pathways. Expression of constitutively active MEK-1, AKT, and STAT3 proteins increased expression, and treatment with MEK, PI3K, AKT, and mTOR inhibitors decreased LEP expression, indicating that leptin via MAPK/ERK1/2, PI3K/AKT/mTOR, and JAK2/STAT3 pathways, in turn, further induces its own gene expression. Thus, targeted inhibition of the leptin-mediated feed-forward loop provides a novel rationale for pharmacotherapy of disease associated with lung injury and remodeling, including lung cancer.


Assuntos
Leptina/genética , Pulmão/metabolismo , PTEN Fosfo-Hidrolase/genética , Receptores para Leptina/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Leptina/metabolismo , Leptina/farmacologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fator 1 Relacionado a NF-E2/genética , Fator 1 Relacionado a NF-E2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Receptores para Leptina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
Cell Physiol Biochem ; 33(5): 1239-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24802001

RESUMO

Assimilation and integration of "omics" technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a "systomic" approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.


Assuntos
Genômica , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Pulmão/fisiologia , Metabolômica , Proteômica , Humanos , Pneumopatias/genética , Pneumopatias/metabolismo
8.
BMC Genomics ; 11: 451, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20659319

RESUMO

BACKGROUND: Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. RESULTS: We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO) similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF)-target gene (TG) similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. CONCLUSIONS: Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.


Assuntos
Redes Reguladoras de Genes , Pulmão/metabolismo , Surfactantes Pulmonares/metabolismo , Animais , Homeostase , Camundongos , Fatores de Transcrição/metabolismo
9.
J Biomol Struct Dyn ; 38(8): 2253-2266, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232187

RESUMO

While studies on pathological protein aggregation are largely limited to neurodegenerative disease, emerging evidence suggests that other diseases are also associated with pathogenic protein aggregation. For example, tumor suppressor protein p53, and its mutant conformers, undergo protein aggregation, exacerbating the cancer phenotype. These findings raise the possibility that inactivation of tumor suppressors via protein aggregation may participate in cancer and other disease pathologies. Since tumor suppressor protein PTEN has similar functions to p53, and is mutated in multiple diseases, we examined the aggregation propensity of PTEN wild-type and 1523 clinically relevant PTEN mutants. Applying computational tools to PTEN mutation databases revealed that PTEN wild-type protein can aggregate under physiological conditions, and 274 distinct PTEN mutants had increased aggregation propensity. To understand the mechanism underlying PTEN conformer aggregation, we analyzed the physicochemical properties of these 274 PTEN mutants and defined their aggregation potential. We conclude that increased aggregation propensity of select PTEN mutants may contribute to disease phenotypes. Our studies have built the foundation for interrogating the aggregation potential of these select mutants in cancers and in PTENopathies. Elucidating the pathogenic mechanisms associated with aggregation-prone PTEN conformers will aid in developing therapies that target PTEN-aggregates in multiple diseases.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Mutação , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , Agregação Patológica de Proteínas/genética , Proteína Supressora de Tumor p53/genética
10.
J Clin Invest ; 116(10): 2597-609, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16998587

RESUMO

Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body-associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing.


Assuntos
Calcineurina/genética , Pulmão/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Calcineurina/metabolismo , Linhagem Celular Transformada , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Pulmão/embriologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Fatores de Transcrição NFATC/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologia , Mucosa Respiratória/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
11.
Am J Respir Cell Mol Biol ; 38(3): 337-45, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17921358

RESUMO

Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.


Assuntos
Brônquios/patologia , Deleção de Genes , PTEN Fosfo-Hidrolase/genética , Alelos , Animais , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cruzamentos Genéticos , Ciclina D , Ciclinas/análise , Ciclinas/metabolismo , Doxiciclina/administração & dosagem , Hiperplasia/etiologia , Imuno-Histoquímica , Antígeno Ki-67/análise , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mucosa Respiratória/embriologia , Mucosa Respiratória/patologia
12.
Cell Cycle ; 17(8): 947-962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29108454

RESUMO

PTEN phosphorylation at its C-terminal (C-tail) serine/threonine cluster negatively regulates its tumor suppressor function. However, the consequence of such inhibition and its downstream effects in driving lung cancer remain unexplored. Herein, we ascertain the molecular mechanisms by which phosphorylation compromises PTEN function, contributing to lung cancer. Replacement of the serine/threonine residues with alanine generated PTEN-4A, a phosphorylation-deficient PTEN mutant, which suppressed lung cancer cell proliferation and migration. PTEN-4A preferentially localized to the nucleus where it suppressed E2F1-mediated transcription of cell cycle genes. PTEN-4A physically interacted with the transcription factor E2F1 and associated with chromatin at gene promoters with E2F1 DNA-binding sites, a likely mechanism for its transcriptional suppression function. Deletion analysis revealed that the C2 domain of PTEN was indispensable for suppression of E2F1-mediated transcription. Further, we uncovered cancer-associated C2 domain mutant proteins that had lost their ability to suppress E2F1-mediated transcription, supporting the concept that these mutations are oncogenic in patients. Consistent with these findings, we observed increased PTEN phosphorylation and reduced nuclear PTEN levels in lung cancer patient samples establishing phosphorylation as a bona fide inactivation mechanism for PTEN in lung cancer. Thus, use of small molecule inhibitors that hinder PTEN phosphorylation is a plausible approach to activate PTEN function in the treatment of lung cancer. Abbreviations AKT V-Akt Murine Thymoma Viral Oncogene CA Cancer adjacent CDK1 Cyclin dependent kinase 1 CENPC-C Centromere Protein C ChIP Chromatin Immunoprecipitation co-IP Co-immunoprecipitation COSMIC Catalog of Somatic Mutations In Cancer CREB cAMP Responsive Element Binding Protein C-tail Carboxy terminal tail E2F1 E2F Transcription Factor 1 ECIS Electric Cell-substrate Impedance Sensing EGFR Epidermal Growth Factor Receptor GSI Gamma Secretase Inhibitor HDAC1 Histone Deacetylase 1 HP1 Heterochromatin protein 1 KAP1/TRIM28 KRAB-Associated Protein 1/Tripartite Motif Containing 28 MAF1 Repressor of RNA polymerase III transcription MAF1 homolog MCM2 Minichromosome Maintenance Complex Component 2 miRNA micro RNA MTF1 Metal-Regulatory Transcription Factor 1 PARP Poly(ADP-Ribose) Polymerase PD-1 Programmed Cell Death 1 PD-L1 Programmed Cell Death 1 Ligand 1 PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase PLK Polo-like Kinase pPTEN Phosphorylated PTEN PTEN Phosphatase and Tensin Homolog deleted on chromosome ten PTM Post Translational Modification Rad51 RAD51 Recombinase Rad52 RAD52 Recombinase RPA1 Replication protein A SILAC Stable Isotope Labeling with Amino Acids in Cell Culture SRF Serum Response Factor TKI Tyrosine Kinase inhbitors TMA Tissue Microarray TOP2A DNA Topoisomerase 2A.


Assuntos
Fator de Transcrição E2F1/metabolismo , Neoplasias Pulmonares/genética , PTEN Fosfo-Hidrolase/metabolismo , Transcrição Gênica , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA de Neoplasias/metabolismo , Humanos , Mutação/genética , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Transporte Proteico
13.
J Mol Biol ; 356(5): 1137-51, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16406070

RESUMO

The solution structure of the homeodomain of the Drosophila morphogenic protein Bicoid (Bcd) complexed with a TAATCC DNA site is described. Bicoid is the only known protein that uses a homeodomain to regulate translation, as well as transcription, by binding to both RNA and DNA during early Drosophila development; in addition, the Bcd homeodomain can recognize an array of different DNA sites. The dual functionality and broad recognition capabilities signify that the Bcd homeodomain may possess unique structural/dynamic properties. Bicoid is the founding member of the K50 class of homeodomain proteins, containing a lysine residue at the critical 50th position (K50) of the homeodomain sequence, a residue required for DNA and RNA recognition; Bcd also has an arginine residue at the 54th position (R54), which is essential for RNA recognition. Bcd is the only known homeodomain with the K50/R54 combination of residues. The Bcd structure indicates that this homeodomain conforms to the conserved topology of the homeodomain motif, but exhibits a significant variation from other homeodomain structures at the end of helix 1. A key result is the observation that the side-chains of the DNA-contacting residues K50, N51 and R54 all show strong signs of flexibility in the protein-DNA interface. This finding is supportive of the adaptive-recognition theory of protein-DNA interactions.


Assuntos
Proteínas de Ligação a DNA/química , DNA/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/fisiologia , Proteínas de Homeodomínio/química , Estrutura Terciária de Proteína , Transativadores/química , Animais , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Ligação de Hidrogênio , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
14.
Cell Death Discov ; 3: 17010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28417017

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by lung remodeling arising from epithelial injury, aberrant fibroblast growth, and excessive deposition of extracellular matrix. Repeated epithelial injury elicits abnormal wound repair and lung remodeling, often associated with alveolar collapse and edema, leading to focal hypoxia. Here, we demonstrate that hypoxia is a physiological insult that contributes to pulmonary fibrosis (PF) and define its molecular roles in profibrotic activation of lung epithelial cells. Hypoxia increased transcription of profibrotic genes and altered the proteomic signatures of lung epithelial cells. Network analysis of the hypoxic epithelial proteome revealed a crosstalk between transforming growth factor-ß1 and FAK1 (focal adhesion kinase-1) signaling, which regulated transcription of galectin-1, a profibrotic molecule. Galectin-1 physically interacted with and activated FAK1 in lung epithelial cells. We developed a novel model of exacerbated PF wherein hypoxia, as a secondary insult, caused PF in mice injured with subclinical levels of bleomycin. Hypoxia elevated expression of phosphorylated FAK1, galectin-1, and α-smooth muscle actin and reduced caspase-3 activation, suggesting aberrant injury repair. Galectin-1 inhibition caused apoptosis in the lung parenchyma and reduced FAK1 activation, preventing the development of hypoxia-induced PF. Galectin-1 inhibition also attenuated fibrosis-associated lung function decline. Further, galectin-1 transcript levels were increased in the lungs of IPF patients. In summary, we have identified a profibrotic role of galectin-1 in hypoxia signaling driving PF.

15.
Data Brief ; 10: 315-324, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28004021

RESUMO

We present data on the evolution of intrinsically disordered regions (IDRs) taking into account the entire human protein kinome. The evolutionary data of the IDRs with respect to the kinase domains (KDs) and kinases as a whole protein (WP) are reported. Further, we have reported its post translational modifications of FAK1 IDRs and their contribution to the cytoskeletal remodeling. We also report the data to build a protein-protein interaction (PPI) network of primary and secondary FAK1-interacting hybrid proteins. Detailed analysis of the data and its effect on FAK1-related functions have been described in "Structural pliability adjacent to the kinase domain highlights contribution of FAK1 IDRs to cytoskeletal remodeling" (Kathiriya et. al., 2016) [1].

16.
Cancer Lett ; 344(1): 1-12, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24157811

RESUMO

Over the last few decades, study of cancer in mouse models has gained popularity. Sophisticated genetic manipulation technologies and commercialization of these murine systems have made it possible to generate mice to study human disease. Given the large socio-economic burden of cancer, both on academic research and the health care industry, there is a need for in vivo animal cancer models that can provide a rationale that is translatable to the clinic. Such a bench-to-bedside transition will facilitate a long term robust strategy that is economically feasible and clinically effective to manage cancer. The major hurdles in considering mouse models as a translational platform are the lack of tumor heterogeneity and genetic diversity, which are a hallmark of human cancers. The present review, while critical of these pitfalls, discusses two newly emerging concepts of personalized mouse models called "Mouse Avatars" and Co-clinical Trials. Development of "Mouse Avatars" entails implantation of patient tumor samples in mice for subsequent use in drug efficacy studies. These avatars allow for each patient to have their own tumor growing in an in vivo system, thereby allowing the identification of a personalized therapeutic regimen, eliminating the cost and toxicity associated with non-targeted chemotherapeutic measures. In Co-clinical Trials, genetically engineered mouse models (GEMMs) are used to guide therapy in an ongoing human patient trial. Murine and patient trials are conducted concurrently, and information obtained from the murine system is applied towards future clinical management of the patient's tumor. The concurrent trials allow for a real-time integration of the murine and human tumor data. In combination with several molecular profiling techniques, the "Mouse Avatar" and Co-clinical Trial concepts have the potential to revolutionize the drug development and health care process. The present review outlines the current status, challenges and the future potential of these two new in vivo approaches in the field of personalized oncology.


Assuntos
Modelos Animais de Doenças , Oncologia/tendências , Neoplasias/terapia , Medicina de Precisão/tendências , Animais , Humanos , Oncologia/métodos , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Medicina de Precisão/métodos
17.
Mol Biosyst ; 10(11): 2876-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25099472

RESUMO

Since aberrant cell signaling pathways underlie majority of pathophysiological morbidities, kinase inhibitors are routinely used for pharmacotherapy. However, most kinase inhibitors suffer from adverse off-target effects. Inhibition of one kinase in a pathogenic signaling pathway elicits multiple compensatory feedback signaling loops, reinforcing the pathway rather than inhibiting it, leading to chemoresistance. Thus, development of novel computational strategies providing predictive evidence to inhibit a specific set of kinases to mitigate an aberrant signaling pathway with minimum side-effects is imperative. First, our analyses reveal that many kinases contain intrinsically disordered regions, which may participate in facilitating protein-protein interactions at the kinome level. Second, we employ a kinome-wide approach to identify intrinsic disorder and streamline a methodology that adds to the knowledge of therapeutically targeting kinase cascades to treat diseases. Furthermore, we find that within the kinome network, some kinases with intrinsically disordered regions have a high topological score, likely acting as kinome modulators. Third, using network analysis, we demonstrate that 5 kinases emerge as topologically most significant, forming kinome sub-networks, comprising of other kinases and transcription factors that are known to serve as drivers of disease pathogenesis. To support these findings, we have biologically validated the interplay between kinome modulators SRC and AKT kinases and uncovered their novel function in regulating transcription factors of the SMAD family. Taken together, we identify novel kinome modulators driven by intrinsic disorder, and biologically validate the thesis that therapeutic disruption of the function of kinome modulators engaged in regulatory cross-talk between disparate pathways can lead to reduced oncogenic potential in cancer cells.


Assuntos
Biologia Computacional/métodos , Proteínas Intrinsicamente Desordenadas/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Smad/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dasatinibe , Regulação da Expressão Gênica , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Proteínas Quinases/química , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia
18.
Sci Signal ; 7(332): pe15, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24985344

RESUMO

The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line of patients with tumor predisposition or with neurological or cognitive disorders, which makes the PTEN gene and protein a major focus of interest in current biomedical research. After almost two decades of intense investigation on the 403-residue-long PTEN protein, a previously uncharacterized form of PTEN has been discovered that contains 173 amino-terminal extra amino acids, as a result of an alternate translation initiation site. To facilitate research in the field and to avoid ambiguities in the naming and identification of PTEN amino acids from publications and databases, we propose here a unifying nomenclature and amino acid numbering for this longer form of PTEN.


Assuntos
Aminoácidos/química , Códon de Iniciação , Bases de Dados de Proteínas , PTEN Fosfo-Hidrolase/química , Sequência de Aminoácidos , Humanos , PTEN Fosfo-Hidrolase/genética , Terminologia como Assunto
19.
Mol Biosyst ; 9(11): 2877-88, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056727

RESUMO

Aberrant activation of the PI3K/Akt/mTOR pathway is observed in several cancers and hyper proliferative disorders. PTEN, a tumor suppressor gene, negatively regulates the PI3K/Akt/mTOR pathway. Inhibitors of various components of this pathway are currently being used for cancer therapy. However, the use of these small molecule inhibitors remains limited due to the presence of compensatory feedback loops within the pathway such that inhibition of one oncogenic molecule often results in the activation of another oncogenic molecule resulting in the development of chemoresistance. One novel strategy that has emerged as a means to circumvent the problem of feedback signaling is by activating tumor suppressor genes that abrogate oncogenic pathways and regress tumor growth. In this regard, a newly identified isoform of the PTEN protein shows promise for use in tumors with elevated PI3K/Akt/mTOR signaling. This isoform is a translational variant of PTEN, termed as PTEN Long, and has additional 173 amino acids at its N-terminus (N-173) than normal PTEN. The N-173 region is required for PTEN secretion and transport across the body. Given the potential of this N-173 region to act as a drug delivery system for PTEN, we herein analyze the structural properties of this region. This N-173 tail has a large intrinsically disordered region (IDR) and is composed of highly charged basic residues. Further, the region is enriched in potential linear binding motifs, protein-binding sites and post-translational modifications (PTMs) indicating its probable role in PTEN function and transport across cells. An extensive analysis of this region is warranted to better exploit its structural and biophysical peculiarities to drug discovery and drug delivery applications.


Assuntos
PTEN Fosfo-Hidrolase/química , Domínios e Motivos de Interação entre Proteínas , Animais , Sítios de Ligação , Biologia Computacional/métodos , Sequência Conservada , Evolução Molecular , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência
20.
Sci Rep ; 3: 2035, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23783762

RESUMO

IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN's protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of PTEN related pathologies.


Assuntos
Modelos Biológicos , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Mapas de Interação de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Redes Reguladoras de Genes , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA